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Abstract

The standard medical practice for can-

cer diagnosis requires histopathology,

which is an invasive and time-consum-

ing procedure. Optical coherence

tomography (OCT) is an alternative that is relatively fast, noninvasive, and

able to capture three-dimensional structures of epithelial tissue. Unlike most

previous OCT systems, which cannot capture crucial cellular-level information

for squamous cell carcinoma (SCC) diagnosis, the full-field OCT (FF-OCT)

technology used in this paper is able to produce images at sub-micron resolu-

tion and thereby facilitates the development of a deep learning algorithm for

SCC detection. Experimental results show that the SCC detection algorithm

can achieve a classification accuracy of 80% for mouse skin. Using the sub-

micron FF-OCT imaging system, the proposed SCC detection algorithm has

the potential for in-vivo applications.
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1 | INTRODUCTION

Cancer accounts for one-quarter of the deaths caused by
noncommunicable diseases, yearly killing millions of
people worldwide, although 30% to 50% of such casualties
could be prevented.1 There exist hundreds of types of
cancers, which can be classified according to their origin
or the type of tissue affected. However, as cancer evolves,
it can metastasize, spreading to other tissues and organs.
Therefore, an early diagnose will determine the success
of treatment and, eventually, the chance of survival.2

This paper is primarily concerned with skin cancer detec-
tion by OCT and deep learning.

Skin cancer, which can be classified into melanoma
and nonmelanoma skin cancer (NMSC), is among the
most common types of cancers.3 Melanoma skin cancers
are more aggressive and pose a higher risk but are less
frequent and easier to detect due to their characteristic
pigmentation and irregular shapes.4 Two common types
of NMSC are basal cell carcinoma (BCC) and squamous
cell carcinoma (SCC), the latter having a lower incidence
rate.5 Other types of NMSC account for less than 1% of
the cases altogether. Despite the lower incidence rate,
SCC is more likely to spread to other tissues and metasta-
size than BCC and hence more important to detect in the
early stage.6 However, it is hard to diagnose. A recent
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study reported that the number of NMSC cases has
grown drastically.7 However, many review papers mani-
fest the lack of study in cutaneous SCC.8–10 In this work,
we focus on SCC detection.

The gold standard in clinical assessment of skin can-
cer is hematoxylin and eosin (H&E) stain histology due
to its high specificity.11 However, H&E stain histology
requires the use of chemicals that may influence the
structure of the tissue to be examined. In addition, H&E
techniques require the excision of tissue, which has the
risk of complications due to scarring, bleeding, and infec-
tions and thus increases the diagnose time.

To avoid these problems, noninvasive diagnosis has
been developed, such as dermoscopy, reflectance confocal
microscopy (RCM), and optical coherence tomography
(OCT). Dermoscopy is widely used in the diagnose of
pigmented skin lesions, such as melanoma, and in recent
years of nonpigmented lesions.12 However, it can only
capture two-dimensional superficial images at a small
magnification (typically a 10-fold magnification), which
makes small structures such as papillary vessels and cell
nuclei difficult, if not impossible, to identify. On the other
hand, RCM offers micrometer lateral resolution with an
intrinsic tradeoff between axial resolution and imaging
depth. The former is typically 3 μm to 5 μm and the latter
100 μm to 200 μm.13 Thus, RCM is often used to visualize
en-face planes, not cross-sectional images. In histological
practice, viewing cross-sectional images is easier to read.

OCT is based on the interference of low-coherent
light. It combines a sub-micrometer axial resolution with
a mid-range imaging depth (0.2–2.0 mm) and is able to
perform in-vivo measurements in a noninvasive way.14

Full-field OCT (FF-OCT) is a variant of OCT that has the
ability to capture a data volume within a few minutes or
even seconds in a single A-scan using a camera sensor
instead of a single photo-diode.15

The advantages of OCT make it one of the most plau-
sible replacements for H&E histology and a perfect solu-
tion for the evaluation of different diseases of epithelial
tissue. Past applications of OCT include diagnose,16, 17

margin delimitation in intervention assessment,18 and
follow-up checks.19 However, as a new technology, OCT
image understanding is not a familiar task for physicians;
it takes time to train. Therefore, manual instructions for
classification of NMSC have been created.20, 21 Automatic
classification based on the support-vector machine has
also been developed for BCC detection involving man-
ual22 or automatic23, 24 feature extraction. However, these
methods were developed with small datasets. Besides,
they cannot provide interpretable information.

To address the above issues, fully automated algo-
rithms based on convolutional neural networks (CNNs)
have been developed. This type of algorithm has achieved

great success in the field of OCT imaging for retina.25, 26

In contrast, the field of OCT imaging for skins is still
under development and very few studies have been
reported using machine learning for automatic segmenta-
tion27 or classification28 of this kind of images, perhaps,
because of the difficulty in obtaining good quality images
from an inhomogeneous, turbid media with a high and
varied scattering distribution.29 As a result, the relevant
literature is scarce. The most relevant approach we can
find is the CNN-based method for BCC classification.28

However, besides the fact that it is about BCC detection
instead of SCC detection, the images used are 2D slices
from ex vivo samples acquired by Mohs surgery, which
cannot be extended to in-vivo experiments.

In this paper, we propose an algorithm for diagnosis
of SCC using an FF-OCT system and a CNN-based classi-
fier. Although the images used in this study are taken
from excised tissue, in-vivo FF-OCT images have a simi-
lar quality and can also be used for this study. The typical
OCT light intensity is about 8 W/cm2, which can be eas-
ily obtained by focusing a red laser pointer. The resulting
system is able to differentiate between normal, dysplasia,
and cancerous samples. The success of our SCC detection
system is due in part to the exploitation of sub-cellular
features captured in the FF-OCT images and in part to
the adaptation of multi-level receptive fields to extract
features at different scales. We explain the system behav-
ior by analyzing how various skin features contribute to
SCC detection through heat map visualization.

The remainder of this paper is organized as follows.
Section 2 describes the hardware configuration of the FF-
OCT system used in this work, the SCC and its character-
istics, and the steps to induce cancer and classify the tis-
sue. In Section 3, we discuss how to improve the quality
of raw images, how to screen the tomograms, and how
the CNN-based methods perform automatic image classi-
fication. We summarize our experimental results in Sec-
tion 4 and discuss the visualization of SCC detection in
Section 5.

2 | BACKGROUND

In this section, we review SCC, FF-OCT, and deep learn-
ing methods for image classification.

2.1 | Full-field OCT

FF-OCT is a noninvasive imaging technique for data col-
lection from optical scattering media. It uses low-coher-
ence interferometry to analyze the reflected light from
objects for scan of sub-surface tissue, such as retina and
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skin. Unlike the common OCT technique that scans
along the axial direction to capture cross-sectional
images, FF-OCT captures a sequence of en-face images
and stacks them into a 3D volume. FF-OCT has two main
advantages over the common OCT technique. First, FF-
OCT acquires the whole field of view in a single scan,
which increases the imaging speed and avoids inaccura-
cies in the lateral scan needed by OCT. Second, the FF-
OCT has better sensitivity and higher resolution along
the axial direction since it has longer exposure time per
en-face image.

The device used in this work to acquire volumetric
data of mouse skin is a Mirau-based FF-OCT system as
shown in Figure 1. The light source is a cerium-doped
yttrium aluminum garnet (Ce:YAG) single-clad crystal
fiber. The fiber, which is fabricated by laser-heated pedes-
tal growth, generates a Gaussian spectrum with central
wavelength at 560 nm and a full-width half-maximum of
98 nm.30 The Mirau interferometer is filled with silicon
oil to mimic the refractive index of the sample tissue to
reduce the optical path difference between the reference
and sample arms and thus provides a more accurate
depth estimation of the structures in the images. Further-
more, the use of a single objective (Olympus
UMPLFLN20XW) stabilizes the system and reduces the
aberrations generated by small differences in the objec-
tives when using a Michelson interferometer.

The system has an isotropic resolution of 0.9 μm in
air, and the voxel size is 0.45 × 0.45 × 0.2 μm3, with the

pixel depth being the smallest in size. The dimensions of
en-face images are 648 × 488 pixels (291.6 × 219.6 μm2),
whereas the depth varies between tomograms, ranging
from 200 to 600 pixels (40–120 μm).

2.2 | Animal model

In this work, all the images were collected from an inter-
nal study that took place from January 2015 to August
2016. At the beginning of the study, the subjects were
30 FVB/N mice aging 6 to 8 weeks, a well-known animal
model for the growth of cutaneous SCC because of its
easy growth.31

In the first week of the experiment, the mice's backs
were shaved, and an immunosuppressor solution (100 μg
7.12-Dimethylbenz[a]anthracene dissolved into 0.2 mL of
acetone), serving as a tumor initiator, was applied to their
skin. During the following 20 weeks, a tumor promoter
(25 mg 12-O-Tetradecanoylphorbol-13-acetate in 100 mL
acetone) was applied weekly. The abdominal skin of the
mice was left untreated to act as control samples.

Figure 2 shows the mouse back skin, presenting an
inflamed epidermis and protruding tumor nests. For each
mouse, if several tumors grew over 5 mm in diameter, we
sacrificed it and then excised skin samples. These sam-
ples were covered with wax and formalin, and classified
as either normal, dysplasia, or SCC, according to their
location and appearance. Images of these samples were
taken by means of FF-OCT and H&E stain.

The structure of mice skin consists of three main
layers from shallow to deep: epidermis, dermis, and sub-
cutaneous tissue. Since SCC only affects the epithelial tis-
sue, we only focus on the first two layers. The epidermis
can be further divided into stratum basale (SB), stratum
spinosum (SS), stratum granulosum (SG), and stratum
corneum (SC) from deep to shallow.32 In normal skin,
basal cells in the SB produce new cells called

FIGURE 1 Schematic diagram of the FF-OCT system. AQWP,

achromatic quarter-wave plate; CCD, charge coupled device; DM,

dichroic mirror; FF-OCT, full-field optical coherence tomography;

LD, laser diode; PBS, polarizing beam splitter; PZT, piezoelectric

transducer

FIGURE 2 Photograph of the growth of SCC in the back skin

of a mouse after sacrifice. The smallest division of the ruler is

1 mm. SCC, squamous cell carcinoma
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keratinocytes. As time goes, the keratinocytes produced
earlier are displaced to the SS by the new ones. Then, the
keratinocytes grow in the SS and migrate to the SG. At
the SG, they undergo keratinization and become flat-
tened as they move to the surface. After this process, they
form a hard and thin structure, SC, consisting of squa-
mous sheets. The SC protects the skin from the outside
invasions. Cornified cells are constantly shed off at a rate
equal to the production rate of basal cells. The dermis,
which primarily consists of dense irregular connective tis-
sue (mainly collagen, elastic fibers, and extrafibrillar
matrix), hosts structures such as hair follicles, blood ves-
sels, and immune cells.32

When skin is affected by SCC, the SC becomes thicker
since the production of cells in the SB is higher than the
loss in the SC. Furthermore, keratinocytes grow in size
and adopt different shapes. As a result, the dermal-epi-
dermal junction (DEJ) is found at a greater depth than
that in normal skin. This difference can be clearly
observed in OCT images of normal and SCC skin, shown

in Figure 3A–D and Figure 3I–L, respectively. On the
other hand, dysplasia is an intermediate state between
normal skin and SCC. In fact, when normal cells undergo
mutations by external agents, such as chemicals or radia-
tion, there exist mechanisms that can repair the damage
and prevent the development of cancer. If the damage is
irreversible, the immune system will try to eliminate
these affected cells. Dysplasia might then appear in dif-
ferent stages, depending on the local reaction to the treat-
ment. In the images from our dataset, this intermediate
stage shows a thicker epidermal layer with bigger
keratinocytes and a slightly thicker or detached SC, as
shown in Figure 3E–H.

2.3 | Deep learning on image
classification

CNN-based algorithms have recently achieved great suc-
cess in image classification. When training a CNN-based

FIGURE 3 Cross-sectional images of mouse skin obtained by H&E staining (left side) and our FF-OCT system (right side). Two

examples of each SCC diagnosis class are provided to show the image diversity. Note that images of the left and right sides do not correspond

to each other. The first row, A-D, corresponds to normal skin, the second row, E-H, corresponds to dysplasia, and the last one, I-L, to SCC.

For illustration purpose, the left portion of each image is manually colored to show the following structural components. BV, blood vessel;

EPI, epidermis; FF-OCT, full-field optical coherence tomography; DER, dermis; H&E, hematoxylin and eosin; NUC, nuclei; SC, stratum

corneum; SCC, squamous cell carcinoma
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classifier, we iteratively update its weights by bac-
kpropagation until a predetermined condition such as
low gradient of training loss is satisfied. Krizhevsky et al.
pioneered a deep CNN structure by stacking multiple
convolutional layers; the resulting network is called Ale-
xNet.33 AlexNet outperformed traditional methods in the
ImageNet large scale visual recognition competition.34

However, plain networks like AlexNet have a low conver-
gence rate when the depth of the network increases
because of gradient vanishing.35, 36 One method to allevi-
ate gradient vanishing is batch normalization,37 which
regularizes the distribution of every convolutional layer
to ensure an effective backpropagation. To further
increase the convergence rate in deep networks, He et al.
proposed the residual neural network (ResNet)38 that
uses short-cuts to connect shallow convolutional layers
with deep ones. When the depth of a network increases,
ResNet converges faster than plain networks do.

Although CNN-based classifiers have achieved supe-
rior performance, their decision policy is less transparent
than that of traditional methods. Therefore, model inter-
pretation methods have been developed. One simple
method is directly visualizing the trained weights, but it
only works for the first layer.39 To realize the features
learned by deeper layers, Zhou et al. visualized class-spe-
cific feature maps by a localization method called class
activation mapping (CAM).40 However, this method only
works for the specific network architecture that performs
global average pooling right before the softmax layer.
Moreover, CAM only enables the visualization of the last
convolutional layer. To interpret the model more gener-
ally, Selvaraju et al. proposed a method called gradient-
weighted CAM (GRAD-CAM).41 GRAD-CAM works for
a wide-variety of CNN-based architectures and applica-
tions, including image classification and segmentation.
Moreover, it is able to interpret the network at every con-
volutional layer, enabling the observation of feature acti-
vation at all levels. Specifically, the heat maps generated
at the shallow layers of the network show the activation
of low-level features instead of high-level features,
because the shallow layers focus on local features. On the
other hand, the heat maps generated at deep layers show
high-level features aggregated from local features; fine
features are missing because the heat maps at deep layers
are low resolution.

3 | PROPOSED METHODS

In this section, we first describe how data are
preprocessed and screened. Then, we describe the design
of the CNN-based classifier.

3.1 | Image preprocessing

In order to reduce the size of the tomograms and obtain
an isotropic voxel size, several methods are applied to the
images acquired from our system using the software suite
FIJI/ImageJ.42, 43 At first, a 3D mean filter of diameter
1 μm is applied to reduce the noise while preserving the
features resolved by our system. Next, the three dimen-
sions are scaled to obtain a cubic voxel of 0.5 μm for each
side, effectively reducing the size of our images by a fac-
tor of three and increasing the number of images that
can fit into the RAM. Then, the images are saved in the
nearly raw raster data (NRRD) format,44 which saves the
data in a single file, together with the necessary informa-
tion for convenient usage.

Besides filtering, we note that the tomograms in the
dataset have different depths since most of the tomograms
were taken individually or in small groups and that, the
scanning depth was independently selected for each of these
runs. To unify the size of images input to our training algo-
rithm, we pad all the tomograms to the same size. The
length, width, and depth of each padded tomogram are
576, 439, and 240 pixels, respectively. Moreover, due to the
memory constraint, we feed cross-sectional images instead
of the whole tomogram to our training algorithm. Therefore,
the size of each FF-OCT image becomes 576 × 240 pixels.

3.2 | Data selection

Since the dimensions of the samples were bigger than the
field of view of the FF-OCT system, tomograms were taken
in a sequential, automatic way by using a translational
stage. While this speeds up the acquisition and increases
the total number of tomograms, some of the volumes con-
tain irrelevant information for classification or have poor
quality due to the noise from vibration or darkness resulted
from, for example, dirt on the sample surface. Therefore,
the tomograms are manually screened, and the main
criteria of tomogram selection were the visibility of cells in
the epidermis and the DEJ. The final number of tomograms
available to our study is 297, of which 100 are from normal
skin, 97 from dysplasia, and 100 from SCC. For each class,
we reserve around 15% of the tomograms for testing and
use the remaining 85% for training. Since there are 439
cross-sections across the Y-axis of each tomogram, we use a
total of 130 383 images.

3.3 | Disease classifier

We adopt ResNet38 as our base approach for disease
classification. Normal ResNet consists of four stages,
each of which has a different number of blocks. Each
block contains two convolutional layers and a skip-

HO ET AL. 5 of 12



connection from the input layer to the output
layer. Various versions of ResNet have been developed.
The shallowest version, ResNet-18, is chosen in this
work. To further reduce the computation, we halve the
number of filters in every convolutional layer. The
resulting network is called Pruned-ResNet-18, which
contains 32, 64, 128, and 256 filters in the four stages.
The network architecture is shown in Figure 4.

One important characteristic of this CNN-based classi-
fier is that the receptive field of a convolutional kernel can
capture features of different sizes.45 We find that the fea-
tures of SCC have to be captured by a large receptive field,
while the features of dysplasia and normal skin can be
captured by a small receptive field, as shown in Figure 5.
Therefore, convolutional kernels with different sizes of
receptive field are used in the network to capture features
of different sizes. To investigate further, we compared
Pruned-ResNet-18 with ResNet-18, Pruned-ResNet-5, and
AlexNet. Pruned-ResNet-5 consists of only the first five
layers of Pruned-ResNet-18 for feature extraction. In com-
parison, AlexNet applies five convolutional layers without
skip-connection to extract features and uses pooling to
increase the receptive field in each layer. The receptive
fields of these models are illustrated in Figure 5. Since the
receptive fields of ResNet-18 and Pruned-ResNet-18 are
equal in size and the receptive field of Pruned-ResNet-5
corresponds to the first five layers of Pruned-ResNet-18,
only the receptive field of Pruned-ResNet-18 is shown. The
size of the receptive field matters in this work because it
determines the extent of fine-to-coarse features to be cap-
tured by the network (see Section 4).

4 | EXPERIMENTS

We compare the SCC detection performance of Pruned-
ResNet-18 and three other networks. The details of the
setup and implementation of this experiment are
described in this section.

4.1 | Experimental setup

Although we use 2-D images for model training, the actual
data for testing are 3D tomograms. Therefore, in the testing
stage, we adopt the winner-take-all policy46 to aggregate the

results of SCC detection for images in the same volume to a
single value. In other words, every image in a volume is first
assigned a label corresponding to an SCC diagnosis class.
Then, the label that receives the most votes becomes the
label of the whole volume. The accuracy of the labeling is
expressed as a normalized confusion matrix.47

We apply k-fold cross-validation48 to measure the per-
formance of our method with different training and test-
ing data. Specifically, we partition the whole dataset into
10 subsets. In each training process, one subset is
reserved for validation, and the others are used for train-
ing. This procedure is repeated until all the 10 subsets
have been validated.

4.2 | Implementation

All the classifiers are trained and tested using PyTorch,49

a deep learning framework that enables fast implementa-
tion. The batch size is set to 32, the cross-entropy is used
as the loss function, and Adam50 is used as the optimizer.
In model training, we record the validation accuracy of
the following 30 epochs after the training accuracy
exceeds 99%. Then, we take the average of the 10 highest
values as the overall classification accuracy. Our training
was performed using an NVIDIA TitanX with an approxi-
mate training time of 10 minutes/epoch.

FIGURE 4 An illustration of

Pruned-ResNet-18. The kernel size and

the number of filters are shown above

each convolutional layer. The labels on

red arrows denote the down sampling

rate of pooling layers

FIGURE 5 The receptive field of each layer of AlexNet

(orange) and ResNet (blue). One pixel corresponds to 0.5 μm in

images
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4.3 | Results

Table 1 shows that the overall accuracy of Pruned-
ResNet-18 is over 80% and higher than the other net-
works. The superior performance of Pruned-ResNet-18
demonstrates the importance of the receptive field. As
shown in Figure 5, the receptive fields of Pruned-ResNet-
18 allow multiple-level feature extraction, which is diffi-
cult to do with AlexNet and Pruned-ResNet-5. This pow-
erful strength makes Pruned-ResNet-18 superior to the
other two networks in terms of overall accuracy. Further-
more, Pruned-ResNet-18 uses fewer parameters than
ResNet-18 without sacrificing accuracy. These favorable
results suggest that the classifier can reduce the compu-
tational burden of SCC detection. The multiply-add cal-
culation and the computing time of pruned-ResNet-18
are 1.41 G and 21.44 ms/batch, respectively, as opposed
to 4.88 G and 39.37 ms/batch of regular ResNet-18. The
computing time is obtained on our server with Nvidia
Tesla v100.

Figure 6 shows the confusion matrixes of the 10-fold
cross-validation. In most cases, the accuracy of dysplasia
is lower than the other two classes. Specifically, normal
and SCC images are seldom misclassified with each
other. However, it is easy to misclassify dysplasia images
as normal or SCC. One possible reason is that there is no
clean cut between the three SCC diagnosis classes
because the tissue evolution from normal to dysplasia
and finally to SCC is a continuous process. Therefore,
dysplasia, which is an intermediate state, is subject to the
highest misclassification rate. On the other hand, it is
easy for the classifier to distinguish between normal and
SCC since they are two disjoint classes in the tissue evo-
lution process.

4.4 | Down-sampling analysis

To investigate how image resolution affects detection
accuracy, we retrain the classifier with low-resolution
images. These low-resolution images are generated from
preprocessed images by average pooling with window
sizes ranging from 2 to 32 pixels. The resulting validation
accuracy is plotted against image resolution in Figure 7.
Note that the image resolution is inversely proportional
to the pixel size. We can see that the detection accuracy
drops with image resolution. That is, higher image reso-
lution leads to higher validation accuracy. This verifies
that FF-OCT image resolution is important to SCC
detection. If cellular-level information is not available,
the classifier can only rely on coarse image structure
information for SCC detection, resulting in
performance drop.T
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5 | DISCUSSIONS

In this section, we use heat maps to explain how Pruned-
ResNet-18 extracts features and how our algorithm can
be further enhanced. In addition, we describe possible
extensions to improve the performance of the classifier.

5.1 | Heat maps

The Pruned-ResNet-18 model detects SCC by capturing
features in different layers. In other words, these fea-
tures are at different scales. This is done by feeding
FF-OCT images of all three SCC diagnosis classes to
the model and using GRAD-CAM to depict
corresponding heat maps.41 We analyze the heat maps
generated at all four stages of our model. The physical
sizes of the receptive field in the four stages are
21 × 21 μm2, 50 × 50 μm2, 105 × 105 μm2, and
217 × 217 μm2, from shallow to deep. The size of the
largest cell nuclei in the epidermis is about 20 μm in
the present dataset, so the heat map generated at the
first stage shows the extracted features at the cellular
level. The other three maps show how the cellular-
level features are aggregated at different scales.

Figure 8 shows the input images, one from each SCC
diagnosis class, and the resulting heat maps. From left to
right, the results of images of normal, dysplasia, and SCC
skin are shown. HM1 denotes the heat map generated at
the first stage, HM2 denotes the heat map generated at
the second stage, and so on. Note that the heat maps
shown in Figure 8 are upsampled to match the input
image size.

The first column in Figure 8 corresponds to a normal
sample. From HM1, we can see that the network extracts
the SC (yellow ellipses) and the DEJ (yellow rectangles)
in the first stage. Note that the features are discrete since
the receptive field at this stage is smaller than the size
of the whole SC and DEJ. As the receptive field increases
in the second and third stages, the features are grouped
into larger patches, as shown in HM2 and HM3. From
HM4, we can see that the DEJ and its surrounding epi-
dermis and dermis constitute the high intensity patches
(red rectangles).

The second column in Figure 8 corresponds to a dys-
plasia sample. From the HM1 (and the input image with
human label) in this column, we can see that the inten-
sity of nuclei (yellow circles) in the epidermis is high, so
is the intensity of capillary vessels (yellow ellipses), DEJ
(yellow rectangles), and SC. The high intensity patches
become the regions around the deepest nuclei in HM2
and HM3. From HM4, we can see that the high intensity
patches include the DEJ and its surrounding epidermis
and dermis (red rectangles). The results suggest that the
deepest nuclei determine the location of the DEJ. It
seems that the high intensity regions around the DEJ
may encode rich information, such as morphology and
distribution of the basal cells, the thickness of epithe-
lium, and micro vasculature.

The last column in Figure 8 corresponds to an SCC
sample. From its HM1, we can see that the high intensity
regions include the top sheets of the SC (yellow ellipses),
the nuclei (yellow circles), and the lower boundary of the
SC (yellow rectangles). Similar to the normal case, the
extracted features in HM1 are grouped into larger regions
in HM2 and HM3. In particular, the two main high

FIGURE 6 Normalized confusion matrices of a 10-fold cross-validation. The normal, dysplasia, and SCC classes in each matrix, are

coded N, D, and S, respectively. SCC, squamous cell carcinoma
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intensity regions in HM3 correspond to the SC and the
epidermis (white polygons). From HM4, we can see that
the main high intensity region is located at the epidermis
(red rectangles), where a large amount of cells reside.
The results are consistent with the fact that thick SC and
large nuclei are typical features of SCC.

We also observe that the nuclei are detected in the
HM1 of abnormal skin (dysplasia and SCC) but not in
normal skin. This can be explained by noting that the
size of the nuclei in normal skin is about four times
smaller than the receptive field in the first stage, so the
nuclei may firstly be captured by the first or second con-
volutional layer of the stage and then aggregated to local-
ize the DEJ.

The heat maps of most images in the dataset have the
following characteristic. In HM1, similar local features in
images are separately extracted. In heat maps of deeper
layers, these local features are progressively aggregated
into high-level features. We also observe that most of the
low-intensity regions, which correspond to areas with
irrelevant information in the input images, do not con-
tribute to the final SCC detection since they fail to aggre-
gate into meaningful high-level features. This shows that

FIGURE 7 The effect of image resolution on the SCC

detection accuracy. Each vertical bar represents the standard

deviation of validation accuracy. To make the chart easy to read,

both down sampling rate and pixel size are shown. Note that the

down-sampling rate is proportional to pixel size. The pixel size at

the original image resolution is 0.5 μm

FIGURE 8 An example input OCT image of each SCC diagnosis class and its associated heat maps at all four stages (HM1 to HM4) of

Pruned-ResNet-18. The features extracted in the heat maps are marked, one single color for each stage. SCC, squamous cell carcinoma; OCT,

optical coherence tomography
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the network is able to select relevant information from
the images for SCC detection.

5.2 | Possible extensions

The characteristics of images in our dataset vary. As
shown in Figure 9, the depth of a tomogram in our
dataset is different from one to another. For some sam-
ples, the data scanning starts from a position above the
skin surface. Therefore, the superficial structures (SC,
epidermis, DEJ, etc.) are visible in the image, see Fig-
ure 9A. However, for samples within the skin, the actual
thickness of the epidermis, the SC or the surface rough-
ness cannot be determined from the image data, see Fig-
ure 9B. Because a majority of the tomograms in our
dataset contain the entire epidermal layer, our classifier
may easily misidentify epidermis as SC and dermis as
epidermis for images that only contain part of epider-
mis. When dermis is misidentified as epidermis, the
classifier considers that the image has a very thick epi-
dermis because the dermis normally occupies a large
area of the image. Consequently, a normal image is clas-
sified as an abnormal one, suggesting that the data col-
lection process (including the setting of scanning
parameters) should be carefully done so as to prevent
such misclassification. In other words, the detection
accuracy can be further improved by enhancing the
quality of the dataset.

We also believe that the CNN-based medical applica-
tion considered in this work can be further extended if
more information about the tomograms is available. For
example, if the thickness of each layer of a tomogram is
given in the dataset, we can train a segmentation model

by taking such information into consideration. Further-
more, the proposed system can be extended to estimate
additional characteristics such as the attenuation coeffi-
cient, the mean intensity, etc., of each tomogram layer.

6 | CONCLUSIONS

Although it is rarely life-threatening, skin cancer
accounts for at least 40% of cancer cases. As skin cancer
develops, the morphology of skin layers provides an
important clue for early diagnosis. In this paper, we have
described a CNN-based classifier called Pruned-ResNet-
18 that provides accurate and interpretable SCC detection
for mouse skins. It achieves over 80% detection accuracy.
This is made possible partly by the employment of an FF-
OCT imaging system at sub-micron resolution and partly
by the employment of a bottom-up feature extraction
mechanism built into the classifier. How the feature
extraction progresses, especially how the cellular-level
features are captured, can be well explained through the
heat maps at the four stages of the classifier, making our
deep learning algorithm interpretable. The importance of
an FF-OCT system at submicron resolution for SCC
detection is further illustrated by a down-sampling analy-
sis. The analysis shows that cellular-level features are
critical to the success of SCC detection.
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