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A B S T R A C T   

We investigate the speed and performance of squamous cell carcinoma (SCC) classification from full-field optical 
coherence tomography (FF-OCT) images based on the convolutional neural network (CNN). Due to the unique 
characteristics of SCC features, the high variety of CNN, and the high volume of our 3D FF-OCT dataset, pro-
gressive model construction is a time-consuming process. To address the issue, we develop a training strategy for 
data selection that makes model training 16 times faster by exploiting the dependency between images and the 
knowledge of SCC feature distribution. The speedup makes progressive model construction computationally 
feasible. Our approach further refines the regularization, channel attention, and optimization mechanism of SCC 
classifier and improves the accuracy of SCC classification to 87.12% at the image level and 90.10% at the 
tomogram level. The results are obtained by testing the proposed approach on an FF-OCT dataset with over one 
million mouse skin images.   

1. Introduction 

Non-invasive medical techniques, which extract biomedical infor-
mation without contacting the internal body, have become increasingly 
popular in diagnostic imaging, clinical staging, and therapy for effec-
tivity and convenience reasons (Gollakota et al., 2011; Huang et al., 
1991; Dubois and Boccara, 2008; Xiong et al., 2018; Olsen et al., 2018; 
Wang et al., 2013). Full-field optical coherence tomography (FF-OCT) is 
a typical non-invasive imaging technique that uses low-coherency light 
to rebuild sample structures at sub-micron resolution (Dubois and Boc-
cara, 2008; Dalimier and Salomon, 2012; Scholler et al., 2020). Fast data 
acquisition and high resolution make FF-OCT a desirable 3D imaging 
technique for retinal image alignment (Wang et al., 2020b; Zhang et al., 
2019), blood vessel detection (Lee et al., 2018; Lee et al., 2016) and red 
blood cell segmentation (Mekonnen et al., 2019), among others. 

In this paper, we focus on the classification of squamous cell carci-
noma (SCC), the second most common form of skin cancer (Muzic et al., 
2017). Algorithms based on convolutional neural network (CNN) can 
extract features relevant to SCC (Ho et al., 2021). However, since the 

variety of CNN-based approaches is high and the training workload for 
each approach is heavy, the exhaustive model construction process is 
time-consuming. The speed may be improved by using the weights of 
pre-trained models. However, such weights obtained from other tasks 
are not applicable to SCC classification because the features for SCC 
classification are unique, which makes transfer learning powerless (Tan 
et al., 2018). A novel approach to speed up model construction is 
required. 

The workload required for training each CNN approach has to do 
with the size of the FF-OCT dataset. In our work, the image size is 576 ×
256 pixels, each tomogram contains 439 images, and there is a total of 
3373 tomograms in the dataset. In other words, our dataset contains 
nearly 1.5 million mouse skin images. In practice, it takes at least two 
days to train a CNN approach on an NVIDIA Tesla V100 (NVIDIA, 
NVIDIA Tesla V100.Technical Report.〈https://www.nvidia. 
com/en-gb/data-center/tesla-v100/〉.). The actual amount of time is 10 
times longer if a 10-fold validation is adopted. 

We find that the image data available are not equally relevant to, or 
effective for, SCC classification. Since the FF-OCT data are densely 
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sampled, neighboring images contain similar information and hence 
present a redundancy. Likewise, most features relevant to SCC classifi-
cation are located in the upper half of the tomograms; the bottom half of 
the tomograms may not contain as much information for SCC classifi-
cation. To reduce the workload and speed up the progressive model 
construction, we design a strategy to selectively use the training data. 
Hopefully, by excluding redundant or ineffective data from training, the 
progressive model construction process can be speeded up with little or 
no performance drop. 

Progressive model construction is often applied to improve classifi-
cation accuracy. In our work, we fit an ordinary CNN model to the SCC 
classification task. To achieve the best result, the model construction 
must take the characteristic of SCC classes into consideration. Since 
there is no clear cut between different SCC classes, a hard-labeling 
approach would make the classifier prone to overfitting. Conse-
quently, a soft-labeling approach and a regularization method using 
mixed labeling are preferred. Channel attention is another important 
component to consider for model construction. It emphasizes key fea-
tures while downplaying the significance of other features. This en-
hances the discrimination power of an SCC classifier. The optimizer of a 
classifier entails a self-governing mechanism to make an iterative pro-
cess converge effectively. It is the third component considered in this 
work for progressive model construction. 

The contributions of the work presented in this paper are as follows. 
We develop an effective training strategy that speeds up the progressive 
model construction process by a factor of 16. We incorporate channel 
attention (Hu et al., 2018; Wang et al., 2020a) and cutmix (Yun et al., 
2019) into the residual neural network and develop a CNN-based model 
for SCC classification of mouse skin. Integrated with an FF-OCT device, 
the overall system provides fast, non-invasive, and accurate SCC clas-
sification. It achieves 87.12% SCC classification accuracy at the 
image-level and 90.10% at the tomogram level. 

The remaining parts of this paper are organized as follows. In Section 
II, we provide a review of FF-OCT, SCC classification, and image clas-
sification techniques. In Section III, we describe the characteristics of the 
FF-OCT dataset and the proposed training strategy. In Section IV, we 
describe our approach to progressive model construction through reg-
ularization (DeVries and Taylor, 2017; Zhang et al., 2017; Yun et al., 
2019), channel attention (Hu et al., 2018; Wang et al., 2020a) and 
optimization (Kingma and Ba, 2014) of CNN, followed by a discussion of 
the experimental results in Section V. Further discussions of the exper-
iments are provided in Section VI. Finally, the concluding remarks are 
made in Section VII. 

2. Related work 

In this section, we describe the FF-OCT imaging techniques used in 
our system. Then, we discuss the characteristic of SCC and the previous 
CNN approaches to image classification. 

2.1. Full-field optical coherence tomography 

Optical coherence tomography (OCT) has been developed for non- 
invasive diagnosis and high-resolution imaging (Huang et al., 1991; 
Izatt and Choma, 2008; Drexler et al., 2014). OCT can work in either the 
time domain (Huang et al., 1991) or the frequency domain (Kalkman, 
2017). Our FF-OCT is a variant of time-domain OCT, aiming for signif-
icant imaging speed improvement. It performs interferometry using a 
broad and bright light source and collects the back-scattered light to 
reconstruct the tissue anatomy at the cellular-level scale. A schematic 
diagram of our system is shown in Fig. 1. The sample, beam splitter, and 
reference mirror are placed in front of an objective that focuses the light 
into the sample to minimize the impact of environmental vibration and 
disturbance (Tsai et al., 2014). 

Conventional time-domain OCT systems perform single-point scan-
ning using a photo-diode with single-pixel, therefore, the data collection 

process is time-consuming. To speed it up, the FF-OCT uses a high-speed 
2D camera to perform all the A-scans simultaneously, avoiding the need 
for lateral scans. Consequently, a 3D tomogram can be obtained in 2 min 
in average. To have a reasonable signal-to-noise ratio, the full well ca-
pacity of each image pixel is 17,000 electrons. As a result, more than 
40 dB of dynamic range can be achieved. FF-OCT is often used for 
clinical analysis that needs non-invasive imaging and timely diagnosis 
(Dalimier and Salomon, 2012; Scholler et al., 2020). For pathological 
analysis of skin cancer, the hematoxylin and eosin staining is a popular 
technique (Chan, 2014; Wells et al., 2007). But it is invasive, and the 
data collection process takes a few days. Therefore, FF-OCT is a good 
alternative when timeliness is desired. 

2.2. Squamous cell carcinoma 

Though skin cancer is rarely life-threatening, it accounts for 40% of 
cancer cases (World Cancer Research Fund, American Institute for 
Cancer, 2019.Skin cancer report. Technical Report.〈https://www.wcrf. 
org/dietandcancer/skin-cancer〉.). The incidence rate of skin cancer has 
been rapidly increasing in recent years (Muzic et al., 2017). SCC is the 
second most common type of skin cancer, and is usually found on skins 
that are exposed to intensive ultraviolet radiation. It affects two layers, 
epidermis and dermis, of the epithelial tissue. When skin is affected by 
SCC, the size and number of keratinocytes cells grow in the epidermis, 
and the stratum corneum in epidermis becomes thicker, resulting in an 
increase of the depth of dermal-epidermal junction (DEJ). 

In the context of this work, we consider three categories of skin 
samples: normal, dysplasia, and SCC. Healthy skin samples belong to the 
normal category. Abnormal skin samples, which are usually observed in 
inflamed and reddish tissue, belong to dysplasia or SCC category. The 
dysplasia category is similar to the actinic keratosis in human, which is 
difficult to discriminate clinically. Abnormal skin samples that have 
developed into cancer belong to SCC category, which are usually 
observed in slowly growing warts. Fig. 2 shows an example of FF-OCT 
image of each category of skin. As we can see, the DEJ of normal skin 
is closer to the surface than that of skin affected by dysplasia. On the 
other hand, the DEJ of an SCC skin sample is too deep to be captured by 
the FF-OCT system. Another feature of SCC is the size of cells. The 
epidermic cells of the dysplasia and SCC skin samples are larger than 

Fig. 1. The schematic diagram of our FF-OCT system. BS: beam splitter; PBS: 
polarizing beam splitter; 2D-CMOS: two-dimensional complementary metal- 
oxide-semiconductor. 
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those of normal skin samples. Moreover, the stratum corneum of an SCC 
skin sample is much thicker than that of a normal or dysplasia skin 
sample. Note also that the boundary between these categories may be 
blurry; there is no clear cut. This characteristic should be considered for 
SCC classification. 

2.3. CNN-based approaches to image classification 

Image classification is a core task in computer vision and image 
processing (Tan and Le, 2019; Russakovsky et al., 2015). CNN is a deep 
learning approach that has achieved great success in image classifica-
tion. Krizhevsky et al. pioneered the deep CNN model for image classi-
fication (Krizhevsky et al., 2017). He et al. proposed the residual neural 
network (ResNet) that improves the convergence rate by using shortcuts 
to connect different layers in each residual block (He et al., 2016). He 
et al. further applied multi-branch residual blocks to enhance the clas-
sification accuracy without increasing the depth or width of the network 
(Xie et al., 2017). 

A key component of CNN-based approaches is the non-linear acti-
vation function. The first non-linear function introduced to a deep CNN 
model is the rectification linear unit (ReLU) (Nair and Hinton, 2010). 
However, the fragility issue may arise when a large gradient is propa-
gated through the network (Xu et al., 2015)]). To address this issue, 
many variants with a non-zero slope have been proposed (Xu et al., 
2015; He et al., 2015; Clevert et al., 2015). A popular one is the para-
metric rectified linear unit (PReLU), which enables CNN model to sur-
pass human performance in an image classification task (He et al., 
2015). 

The representational power of CNN can be improved by adopting the 
channel attention mechanism. The squeeze-and-excitation (SE) block 
(Hu et al., 2018) is a pioneering channel attention module that rescales 
the feature map according to the channel-wise dependency. Wang et al. 

enhanced the learnability and saved the parameters by handling 
cross-channel interaction without dimensional reduction (Wang et al., 
2020a). 

Another popular refinement is the regularization method, which al-
leviates overfitting for model training. Traditionally, regularization is 
performed by adding an L2-norm to the loss function. Most regulariza-
tion methods for CNN perform regional dropout to generate soft labeling 
while alleviating overfitting. Devries et al. proposed the cutout algo-
rithm that randomly masks an image region and enforces the model to 
learn every local feature (DeVries and Taylor, 2017). To make the model 
learn the dependency between different classes, Zhang et al. proposed 
the mixup algorithm that mixes the training images from two different 
classes by linear interpolation and labels the mixed images according to 
the ratio between the two classes (Zhang et al., 2017). Exploiting the 
cutout and mixup algorithms, Yun et al. developed the cutmix algorithm 
that considers the completeness of image structure and the dependency 
between classes when generating mixed images (Yun et al., 2019). 

3. Proposed training strategy 

As described in Section I, the redundancy between FF-OCT images 
and the knowledge of SCC feature distribution can be exploited to 
reduce the computational complexity of model training for SCC classi-
fication. Therefore, it is essential to discuss the characteristics of the FF- 
OCT data. Before that, we describe how the data were collected from the 
FF-OCT system described in Section II-A. Then, we describe the pro-
posed training strategy. 

3.1. FF-OCT data characteristics 

The FF-OCT data used in this work were collected from around 40 
Friend Virus B NIH Jackson (FVB/N) female mice aging 6–8 weeks 
(Calderon-Delgado et al., 2021). We induced tumor growth in their back 
skin by combining an immunosuppressant solution with a tumor pro-
moter (Hennings et al., 1993). We took normal samples from abdominal 
tissue, which was left untreated, and abnormal samples from excised 
back skin. Abnormal samples were further categorized into dysplasia 
and SCC. Inflamed, reddish back skin samples were categorized as 
dysplasia, whereas tumor samples that grow over 5 mm were catego-
rized as SCC. 

Three pre-processing steps were performed after data collection. 
Firstly, a 1-μm mean filter was applied to reduce the noise of tomograms. 
Secondly, tomograms were resized to obtain an isotropic voxel size of 
0.5 μm. The last step padded the tomograms to a homogeneous size of 
576 × 256 × 439 (width × height × length) pixels. Each pre-processed 
tomogram corresponds to a tissue volume of physical size 
288 × 128 × 219.5 μm3. The pixel sampling period satisfies the Nyquist 
criterion. Each tomogram contains 439 cross-sectional images for SCC 
classification. The interval between neighboring cross-sectional images 
is 0.5 μm, but the diameter of cancer nuclei usually ranges from 20 μm to 
30 μm. Consequently, a cancerous nucleus may appear in more than 40 
cross-sectional images, and consecutive cross-sectional images of a 
tomogram may bear significant similarity. In other words, there exists 
significant redundant information between consecutive cross-sectional 
images. 

Furthermore, the features relevant to SCC classification are not 
uniformly distributed. For example, features of the dermis layer, which 
is located deep into a cross-sectional image, are mostly irrelevant to SCC 
classification. Therefore, the lower part of a tomogram is not as 
contributive as the upper part to SCC classification. In contrast, the 
upper part of a tomogram contains rich relevant features, such as the 
thickness of stratum corneum and the size of cancer cells. 

Therefore, it is feasible to improve the computational efficiency of 
model training by leveraging the feature distribution and data redun-
dancy and by removing image regions irrelevant to SCC classification. 

Fig. 2. Example FF-OCT images of (a) normal, (b) dysplasia, and (c) SCC skin.  
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3.2. Training strategy 

Our goal is to speed up model training. A training strategy here refers 
to a plan of action that makes the training of neural network models 
computationally feasible. For SCC classification, we need to optimize 
each candidate model on a large dataset and select among all candidate 
models the best one. The operations involved in this process must be 
performed in an efficient way. 

An overview of our training strategy is depicted in Fig. 3. We crop the 
cross-sectional images to remove irrelevant features. An important 
consideration of the training strategy is that the region to be cropped 
should be carefully selected so that the epidermis and hence SCC fea-
tures can be well preserved. In our design, we reduce the height and 
width of cross-sectional images by half if the performance drop due to 
the reduction is within 1%. The process continues for the remaining half 
until the performance drop exceeds 1%. This operation makes the CNN 
focus on regions that contain rich features for SCC classification and, in 
the meantime, reduces the memory usage for model training. It allows us 
to train more candidate classification models per graphical processing 
unit and quickly select the optimal model. 

On the same design principle, we sub-sample images in each tomo-
gram to reduce the amount of data to be processed. Noting that the 
reduction of training data may sacrifice data diversity and induce 
overfitting, we strike a balance between data diversity and training ef-
ficiency. Specifically, we monitor the performance drop while doubling 
the sampling interval. The process continues until the performance drop 
is greater than 1%. 

These two data reduction operations save the computational time 
and make progressive model construction computationally manageable. 
In addition, since the features for SCC classification are largely pre-
served, the classification accuracy is maintained as much as possible. 

4. Progressive model construction 

We improve the regularization, channel attention, and optimization 
mechanisms of model construction. In particular, to cope with the 
characteristic of SCC categorization, we apply soft-labeling to refine the 
regularization and loss function. In addition, we adjust the architecture 
of SCC classifier to make it focus on key features of FF-OCT images. 
Finally, we fine tune the optimizer and the activation function to control 
the convergence process. The details of these operations are discussed in 
this section. 

4.1. Soft Labeling 

As described in Section II, there is not a clear cut between different 
SCC classes. Therefore, a soft labeling method is applied by using the 
cutmix as the regularization method to alleviate overfitting and by 
applying the smooth cross-entropy as the loss function to optimize the 
result. 

As illustrated in Fig. 4, the concept of cutmix entails the generation of 
a mixed image from two images of distinct classes by cropping a region 
from one image and pasting it to the other image at the corresponding 
position. The label of the mixed image is determined by the ratio be-
tween the two regions of the mixed image, as shown in Fig. 4. This 
operation can be applied to generate images in between two image 
classes and to let a model learn the soft boundary between classes. 

We also try to discourage the SCC classification model from being 
over-confident of its prediction by using smooth cross entropy as the loss 
function (Szegedy et al., 2016). Denote the three SCC class labels by 1 for 
normal, 2 for dysplasia, and 3 for SCC. Also denote the ground truth of 
an image by y, which is a triplet of three items. Initially, each item of y is 
either 0 or 1, and only one item is 1. Let yi be an item of y, i ∈ {1, 2, 3}. 
During model training, the ground truth label is converted to a soft label. 
The value of yi is updated by 

yi =

⎧
⎨

⎩

1 − ϵ, if i = j
ϵ
2
, otherwise.

⎫
⎬

⎭
, (1)  

where ϵ is a small constant much less than 1, and j is the ground truth 
class label of y. This way, a hard label is converted to a soft label that is 
slightly deviated from the ground truth. The small perturbation intro-
duced through this operation reduces the impact of images near the 
border of an SCC class on model training. 

The loss function L(y, y′) is defined by the cross entropy of the ground 
truth y and the prediction y′. That is 

Fig. 3. Illustration of the proposed training strategy. Yellow parts represent the data used for training, while the black part represents the data discarded.  

Fig. 4. Illustration of the cutmix algorithm. Regions belong to image classes A 
and B are shown in blue and orange, respectively. 
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L(y, y′) = −
∑3

i=1
yilog(y′). (2)  

4.2. Model architecture adjustment 

The architecture of SCC classification model determines its learn-
ability and hence accuracy. Because of its low complexity, ResNet-18 is 
adopted as the backbone architecture of our model (He et al., 2016, 
2019). It consists of four down-sampling blocks, each of which is divided 
into two paths, A and B, as shown in Fig. 5. Path A contains two 
consecutive 3 × 3 convolutional layers. One of them is responsible for 
reducing the width and height of the input tensor by one half, and the 
other performs a non-linear transformation without dimension reduc-
tion. Path B contains a 1 × 1 convolutional layer with a stride of 2 to 
halve the height and width of the input. The output of each 
down-sampling block is the sum of the tensors generated by its two 
paths. 

The down-sampling process performed in path B overlooks three- 
quarters of the information from the input tensor. To fix the problem, 
we set the stride of the convolutional layer to 1 and insert an average 
pooling layer in front of it. In this way, all the information of the input 
tensor is conveyed in path B. The resulting model is called ResNet-18A in 
this paper. 

In view of the impact of significant features on model training, we 
apply a channel attention mechanism to the SCC classification model. 
Specifically, we add an SE or an efficient channel attention (ECA) block 
described in Section II-C to every block of ResNet-18A. The architectures 
of SE and ECA are shown in Fig. 6. Consider an input tensor T ∈ RH×W×C. 
A global average pooling (GAP) is performed in these two additional 
blocks to obtain a transformed tensor GAP(T) ∈ R1×1×C. Then, a scaling 
vector S(T) ∈ R1×1×C is generated by two fully-connected networks in SE 
or by a 1D convolutional layer with a kernel size of 5 in ECA. The S(T) 
rescales the input tensor T to generate an output tensor O(T) ∈ RH×W×C. 
This operation recalibrates the features of T. 

4.3. Convergence mechanism 

The convergence mechanism of model training controls how an 
optimizer reaches a solution. A desirable convergence mechanism 
adapts to the dynamics of the loss function so that the solution can be 
effectively and efficiently found. 

We achieve the adaptivity by increasing the decay momentum of the 
optimization process. That is, the beta parameter, which is between 
0 and 1, of the Adam optimization algorithm is set to a small value 
(Kingma and Ba, 2014). 

If ReLU is used as an activation function and if negative gradients are 
propagated through some neurons of the SCC classification model, these 
neurons may stop working and hence affect the convergence of model 
training. Therefore, we use PReLU instead, because it is robust to 
negative gradients [30]. 

5. Experiments 

We conducted experiments to evaluate the performance of the pro-
posed training strategy and progressive model construction described in 
Secs. III and IV. In this section, we first discuss the implementation de-
tails, including data partitioning, experimental setup, and metrics for 
performance evaluation. Then, we show the experimental results of the 
proposed training strategy and progressive model construction and 
investigate the relationship between model complexity and classifica-
tion accuracy. Finally, we verify our selection of the sampling interval 
and check how our SCC classifier performs in comparison with a human 
expert. 

5.1. Data partition 

We partitioned the 3373 tomograms of the dataset described in Sec. I 
into three sets: training, validation, and testing. The testing set con-
sisting of 677 tomograms was first selected from the dataset. Then, we 
divided the remaining tomograms into 10 subsets and performed a 10- 
fold cross validation procedure (Arlot and Celisse, 2010)]). In each 

Fig. 5. Comparison between the down-sampling blocks of (left) a conventional ResNet18 and (right) an adjusted version of ResNet18. Blue and red boxes denote 
convolutional layers and average pooling layers, respectively. The kernel size (k) and strides (s) of each layer are shown in the diagrams. 
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step of the procedure, one of the subsets was chosen as the validation set 
and all the other subsets as the training set. This step continued 10 times 
for all subsets. 

Recall that one to ten tomograms were collected from each tissue 
sample. To make the tomograms in different sets as independent of each 
other as possible, those collected from the same tissue sample were 
grouped in the same set. 

5.2. Experimental setup 

Our experiments were implemented on an NVIDIA Tesla V100 
(NVIDIA, NVIDIA Tesla V100.Technical Report.〈https://www.nvidia. 
com/en-gb/data-center/tesla-v100/〉.) using PyTorch (Paszke et al., 
2017), which is a deep learning framework for fast implementation. The 
batch size was set to 32 and the learning rate of the Adam optimizer was 
set to 0.001. We monitored the loss of SCC classification model evalu-
ated on the validation set in each epoch and terminated the training 
process if the minimum loss did not decrease for 10 epochs. 

5.3. Metric 

In this work, we evaluate the performance of SCC classification 
model at both image and tomogram levels. For the image-level evalua-

tion, we compute the average accuracy of the predictions generated by 
the SCC classification model for all images. Denote an input image by xi 
and the function performed by the SCC classification model by F( ⋅ ). 
Then, the prediction for xi generated by the SCC classification model is F 
(xi) ∈ R3, and the formula for average accuracy is 

AI =
1
N

∑N

i=1
1(argmaxj=1,2,3 F(Xi) = yi), (3)  

where N denotes the number of images, yi as defined in Eq. (1) denotes 
the class label of xi, and 1( ⋅ ) denotes the 0–1 indicator function (Gerber 
et al., 2003). 

For the tomogram-level evaluation, we take the average of the pre-
dictions for images in a tomogram and decide an aggregated prediction 
for the whole tomogram. Consider a tomogram Xk with 439 cross- 
sectional images {x1, …, x439}. The class label prediction F(Xk) of the 
tomogram is computed from the predictions F(x1),., and F(x439) by 

F(Xk) =
1

439
∑439

i=1
F(xi). (4)  

Then, the tomogram-level accuracy is obtained by 

Fig. 6. Illustration of (a) SE and (b) ECA. The green volume denotes the tensor whose size (height, width, and channels) is shown. The multiplier performs element- 
wise multiplication. GAP: global average pooling; FC: fully-connected layer; 1D conv: 1D convolutional layer with kernel size 5. 
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AT =
1
M

∑M

k=1
1(argmaxj=1,2,3 F(Xk) = Yk), (5)  

where M denotes the number of tomograms in the dataset and Yk de-
notes the ground truth label of the tomogram Xk. 

The 10-fold validation generates 10 SCC classification models 
denoted by F1,., and F10. We evaluate their performance in two ways. 
One takes the average accuracy at both image and tomogram levels; the 
result is called overall accuracy. The other considers an ensemble SCC 
classification function FE( ⋅ ) obtained by 

FE(xi) =
1
10

∑10

k=1
Fk(xi) (6)  

Then, the accuracy of the ensemble SCC classifier is computed by 
substituting FE( ⋅ ) for F( ⋅ ) in Eqs. (3) and (5); the result is called 
ensemble accuracy. Totally, four different accuracy measurements 
(overall AI, overall AT, ensemble AI, and ensemble AT) of each SCC 
classification model are obtained. 

5.4. Results of training strategy 

Recall that the goal of the training strategy is to make model training 
computationally efficient. Table 1 shows the effect of image height 
reduction on model training. As we can see, the best result is obtained 
when the height is 128. When the height is 256, the bottom half of image 
may contain the features of dermis, which have little to do with SCC. 
Their appearance in the image affects the performance of SCC classifi-
cation. On the other hand, when the image height is 64, the image does 
not contain sufficient epidermis features for SCC classification. 

Table 2 shows the effect of image width reduction on model training. 
We can see that reducing the image width results in a performance drop. 
A possible reason for the performance drop is that DEJ may not present 
in the whole cross-section. As discussed in Sec. II-B, the depth of DEJ is 
an attribute of SCC. The DEJ is a curved segment along the horizontal 
axis. When we crop the image horizontally, the DEJ may become absent 
in the image, making the SCC classification model misjudge the actual 
depth of DEJ and resulting in a misclassification. Table 2 also shows that 
reducing the width in either direction yields the same effect, suggesting 
that the left and right halves of a tomogram are equally important to SCC 
classification. 

Table 3 shows the results of model training using larger sampling 
intervals. We can see that the performance drop is contained within a 
0.8% range when the sampling interval is less than or equal to 16. 
However, an abrupt performance drop occurs when the sampling in-
terval increases from 16 to 32, at which the physical distance between 
neighboring images becomes 16 μm. This means that the cancer cell 
whose diameter is 20–30 μm can only appear in one or two consecutive 
images at most. Therefore, the sub-sampled tomogram may lack suffi-
cient information of the cancer cell for SCC classification, resulting in 
poor classification accuracy. 

5.5. Results of progressive model construction 

All experiments on progressive model construction were performed 
by setting the sampling interval to 16 and the image height to 128.  
Table 4 shows the results of an ablation test on the cutmix. As we can 

see, without the cutmix, the accuracy of SCC classification drops 2%. 
This shows that the cutmix is an important component for training an 
SCC classifier. Without it, the model training would suffer from over-
fitting and hence result in poor classification accuracy. 

Table 5 shows the results of model training using ResNet-18A and 
ResNet-18. We can see that the former has better accuracy because it 
attempts to preserve the features of FF-OCT images while down- 
sampling the images. This is a distinct feature of our design. 

Table 6 shows the contributions of channel attention to the SCC 
classification performance. We can see that the adoption of ECA and SE 
(Sec. IV-B) improves the classification accuracy of ResNet-18A, sug-
gesting that reweighting FF-OCT image features is helpful. Table 6 also 
shows that ECA can better control the cross-channel interactions of 
features extracted by each residual block than SE. 

The results of using different beta values in Adam for model training 
are shown in Table 7. We can see that similar SCC classification accuracy 
is obtained for beta = 0.1, 0.3, and 0.5. It should be noted that the 
default value 0.9 of beta yields the worst accuracy. Note that the clas-
sification accuracy varies more than 2% in this experiment, larger than 
the variations of all other experiments. Therefore, the beta value should 
be carefully selected. 

Table 8 shows the results of model training using ReLU and PReLU. 
We find that PReLU performs consistently better than ReLU for ResNet- 
18A, although the difference is moderate. We can also see that the 
integration of all the refinement methods enables ResNet-18A to achieve 
90.1% SCC classification accuracy at the tomogram level. This is the best 
result so far. 

Table 1 
Results of Model Training with Different Image Heights.  

Image height Overall Ensemble  

AI AT AI AT  

256  0.8584  0.8700  0.8654  0.8759  
128  0.8636  0.8874  0.8769  0.8936  
64  0.8100  0.8457  0.8245  0.8463  

Table 2 
Results of Model Training with Different Image Widths.  

Image width Overall Ensemble  

AI AT AI AT 

576  0.8636  0.8874  0.8769  0.8936 
288 (L)  0.8339  0.8753  0.8511  0.8803 
288 (R)  0.8377  0.8735  0.8504  0.8744  

Table 3 
Results of Model Training Using Different Sampling Interval.  

Sampling interval Overall Ensemble  

AI AT AI AT  

1  0.8636  0.8874  0.8769  0.8936  
2  0.8656  0.8924  0.8773  0.8936  
4  0.8649  0.8849  0.8749  0.8862  
8  0.8588  0.8901  0.8714  0.8921  
16  0.8610  0.8821  0.8710  0.8862  
32  0.8468  0.8700  0.8579  0.8729  

Table 4 
Accuracy of SCC Classification Before and After the Cutmix is Removed.  

Cutmix Overall Ensemble  

AI AT AI AT 

with  0.8610  0.8821  0.8710  0.8862 
without  0.8428  0.8809  0.8585  0.8833  

Table 5 
Accuracy of Adjusted and Original ResNet-18.  

Cutmix Overall Ensemble  

AI AT AI AT 

ResNet-18A  0.8659  0.8889  0.8710  0.8862 
ResNet-18  0.8428  0.8809  0.8585  0.8833  
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5.6. Model complexity 

An experiment was performed to investigate how the complexity of 
the SCC classification model relates to the classification accuracy. In this 
experiment, we applied the proposed approach to train and refine 
ResNet-50 and ResNet-101, both are deeper than ResNet-18A. All the 
refinements are implemented on ResNet-50 and ResNet-101, so the only 
difference is the depth of the network. Deeper models have a higher 
complexity. We can see from the results shown in Table 9 that increasing 
the model complexity does not necessarily enhance the classification 
accuracy. In fact, the performance of the ResNet-18A is as good as 
ResNet-50. In view of the trade-off between complexity and perfor-
mance, ResNet-18A is a good choice. 

5.7. Retraining with small sampling intervals 

The sampling interval 16 selected in Sec. V-D is the result of a 
tradeoff between classification accuracy and computational efficiency of 
model training. To verify the appropriateness of this selection, we 
retrain the refined SCC classification model with different sampling in-
tervals smaller than the selected value. A smaller sampling interval 
means a higher sampling rate. 

Table 10 shows the SCC classification accuracy of retraining the 
refined model using different sampling intervals. We can see that, in 
general, using smaller sampling intervals slightly improves the classifi-
cation accuracy; however, the improvement is only 0.56% at best. 
Therefore, we are confident that the sampling interval 16 is an 

appropriate choice. 

5.8. Comparison with human performance 

We also asked a medical expert with over 10 year experience on OCT 
imaging to classify the same testing tomograms. The training and testing 
data were partitioned as described in Sec. V-A. Before the test, the expert 
was given a chance to get familiar with the training data and perform 
labeling tests on the training data. In labeling tests, each tomogram was 
presented as a collection of ten cross-sectional images uniformly 
distributed along the two lateral directions. This human training process 
continued until the expert surpassed 90% classification accuracy. Then, 
the expert was asked to label each of the 677 testing tomograms. Among 
these, the human expert made a correct prediction for 569 tomograms 
and a wrong prediction for 103 tomograms, leaving the other 5 tomo-
grams unpredicted. Thus, the classification accuracy of the expert is 
84.04%. Comparing it with the classification accuracy 90.1% of our 
approach, we can see that our SCC classifier is superior to the human 
expert. 

6. Discussion 

In this section, we discuss the difference between the image-level 
accuracy and the tomogram-level accuracy. We also discuss why trans-
fer learning and knowledge distillation are not applicable to SCC 
classification. 

6.1. Accuracy 

As described in Sec. V-C, we measure the classification accuracy at 
both image and tomogram levels. We note that the tomogram-level ac-
curacy is always higher than the image-level accuracy. The existence of 
this difference can be explained by an example tomogram shown in  
Fig. 7. The ground truth class label of this tomogram is dysplasia. The 
first 100 images of the tomogram are noisy and contain sparse SCC 
features, as shown in the top image of Fig. 7. Therefore, the predictions 
for those images are inaccurate. For the other images of the tomogram, 
the structure of DEJ is clearly presented, as shown in the bottom image 
of Fig. 7. The SCC classifier makes an accurate prediction for these im-
ages. For this tomogram, the model achieves 75.85% image-level ac-
curacy and 100% tomogram-level accuracy. This example shows that, as 
long as the tomogram receives a majority of the correct predictions, the 
incorrect predictions do not affect the final tomogram-level accuracy. In 
other words, aggregating predictions from different images effectively 
alleviates the impact of noise on classification accuracy. This is why the 
tomogram-level accuracy is always higher than the image-level 
accuracy. 

6.2. Transfer learning 

As described in Section I, transfer learning is a popular training 
strategy. It facilitates model training by using the weights of another 
model pre-trained in other tasks to initialize the model to be trained. In 
this way, model training does not have to start from scratch. However, 

Table 6 
Results of Model Training Using Different Channel Attention Mechanisms.  

Mechanism Overall Ensemble  

AI AT AI AT 

without  0.8659  0.8889  0.8710  0.8862 
SE  0.8676  0.8961  0.8774  0.8995 
ECA  0.8689  0.8954  0.8781  0.9010  

Table 7 
Accuracy of SCC Classifier Using Different Beta Values of the Optimizer for 
Model Training.  

Beta Overall Ensemble  

AI AT AI AT  

0.9  0.8494  0.8895  0.8623  0.8892  
0.7  0.8669  0.8927  0.8748  0.8951  
0.5  0.8689  0.8954  0.8781  0.9010  
0.3  0.8704  0.8930  0.8799  0.8980  
0.1  0.8698  0.8939  0.8790  0.8956  

Table 8 
Results of Model Training using Different Activation Functions.  

Activation function Overall Ensemble  

AI AT AI AT 

ReLU  0.8689  0.8954  0.8781  0.9010 
PReLU  0.8712  0.8974  0.8792  0.9010  

Table 9 
Results of Model Training Using Different Depths.  

Model Depth Overall Ensemble  

AI AT AI AT  

18  0.8712  0.8974  0.8792  0.9010  
50  0.8701  0.8909  0.8821  0.8980  
101  0.8674  0.8870  0.8798  0.8966  

Table 10 
Results of the Refined SCC Classifier Using Different Sampling Interval.  

Sampling interval Overall Ensemble  

AI AT AI AT  

1  0.8682  0.8867  0.8848  0.8906  
2  0.8706  0.8902  0.8795  0.8936  
4  0.8726  0.8952  0.8789  0.9010  
8  0.8683  0.8834  0.8789  0.8906  
16  0.8712  0.8974  0.8792  0.9010  
32  0.8502  0.8836  0.8665  0.8921  
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transfer learning is not suitable for the problem considered in this work 
for two reasons. The first reason is that the features of SCC are unique; 
therefore, the feature extraction learned from other tasks is not helpful 
for the training of an SCC classifier. The second reason is that most 
transfer learning methods are designed for RGB images, but FF-OCT 
images are grayscale, making transfer learning inappropriate for SCC 
classification. 

6.3. Knowledge distillation 

Study has shown that knowledge distillation (Hinton et al., 2015) is a 
common technique for model construction. However, it is not applicable 
to SCC classification. Using a deep network to enhance the learnability 
of the shallow network does not work for the model training considered 
in this work because the assumption that classification accuracy in-
creases with model complexity does not hold for SCC classification, as 
suggested by the results shown in Table 9. 

7. Conclusion 

Squamous cell carcinoma classification from FF-OCT images is an 
elaborative process even for a well-trained physician. In this paper, we 
have described an efficient training strategy that takes the characteris-
tics of FF-OCT data into consideration and achieves a significant 
reduction of computation time required for model training. It is an 
essential step that makes the progressive model construction of CNN- 
based SCC classification computationally feasible. The performance of 

our proposed model construction is attributed to the consideration of 
both morphological and cellular characteristics of squamous cell carci-
noma in the design. 

We have also provided a thorough analysis of the effectiveness of the 
proposed training strategy and progressive model construction through 
various experiments. We believe the lessons learned from this work and 
the techniques developed herewith are useful for other medical appli-
cations of machine learning as well. 
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