CHI-JUI (JERRY) HO

+1(858) 242-9511 \diamond San Diego, CA

chh009@ucsd.edu \$\displayhttps://www.linkedin.com/in/chi-jui-jerry-ho-7306a7129/ \$\displayhttps://jerryhotaiwan.github.io

EDUCATION

Ph.D. of Electrical and Computer Engineering, UC San Diego

2020-2026 (expected)

GPA: 3.90/4.00

Research interests: Computational Imaging and Medical Imaging

Relevant courses (all A): Physic Optics and Fourier Optics, Digital Signal Processing, and Statistical Learning

Advisor: Nick Antipa

Bachelor of Electrical Engineering, National Taiwan University

2015 - 2019

GPA: 3.88/4.30

Relevant courses (all A or A+): Computer Vision, Machine Learning, Mathematical Principle of Machine Learning,

Deep Learning on Computer Vision, and Convex Optimization

Advisor: Homer H. Chen

EXPERIENCE

Research Scientist Intern	Jun 2024 - Sep 2024
Reality Lab, Meta	$Redmond,\ WA$
Graduate Student Researcher	Sep 2020 - Now
Computational Imaging System Lab, UCSD	San Diego, CA
Graduate Student Researcher	Sep 2020 - Mar 2022
Video Processing Lab, UCSD	San Diego, CA
Research Assistant	Jul 2019 - Mar 2020
Multimedia Processing and Communications Lab, NTU	Taipei, Taiwan
Undergraduate Researcher	Sep 2017 - Jun 2019
Multimedia Processing and Communications Lab, NTU	Taipei, Taiwan
Summer Intern	Jul 2018 - Aug 2018
Department of Multimedia, Mediatek	Hsinchu, Taiwan

PUBLICATION

- <u>C.-J. Ho</u>, Y. Behle, R. Ramamoorthi, T.-M. Li, and N. Antipa, "A Differentiable Wave Optics Model for Endto-End Imaging System Optimization," Accepted as Oral in *Photonic West 2024*
- <u>C.-J. Ho</u>, S. Duong, Y. Wang, C. Nguyen, B.Bui, S. Truong, T. Nguyen, and C. An, "An Unsupervised Learning Approach to 3D Rectal MRI Volume Registration," in *IEEE Access*, vol. 10, pp. 87650-87660, 2022, doi: 10.1109/ACCESS.2022.3199379.
- <u>C.-J. Ho</u>, M. Valentine, W. Xiong, and N. Antipa, "Compressed Sensing of 2D IR Using Spectroscopic Models," Accepted as Poster in *International Conference on Coherent Multidimensional Spectroscopy*, 2022.
- <u>C.-J. Ho</u>, Y. Wang, J. Zhang, T. Nguyen, and C. An, "A Convolutional Neural Network Pipeline for Multi-Temporal Retinal Image Registration," in *International SoC Design Conference*, 2021.
- <u>C.-J. Ho</u>, M. Calderon-Delgado, M.-Y. Lin, J.-W. Tjiu, S.-L. Huang, and H. H. Chen, "Classification of Squamous Cell Carcinoma from FF-OCT Images: Data Selection and Progressive Model Construction," in *Computerized Medical Imaging and Graphics* 93 (2021): 101992.
- <u>C.-J. Ho</u>, M. Calderon-Delgado, C.-C. Chan, M.-Y. Lin, J.-W. Tjiu, S.-L. Huang, and H. H. Chen, "Detecting mouse squamous cell carcinoma from submicron full-field optical coherence tomography images by deep learning," in *Journal of Biophotonics*, 2020.
- <u>C.-J. Ho</u>, C.-C. Chan, and H. H. Chen, "AF-Net: A Convolutional Neural Network Approach to Phase Detection Autofocus," in *IEEE Transactions on Image Processing*, vol. 29, pp. 6386-6395, 2020.

• <u>C.-J. Ho</u> and H. H. Chen, "On the Distinction between Phase images and Two-View Light Field for PDAF of Mobile Imaging," in *Electronic Imaging*, 2020.

PROJECTS

Differentiable Wave Optics. We propose a differentiable simulator, which is able to model wave optics in compound optical system with full field-of-view. The proposed simulator is applicable to end-to-end imaging system optimization.

Compressed Sensing on 2D IR Spectrum Reconstruction. We increase the efficiency of 2D IR data collection by jointly optimizing the sampling strategy and reconstruction.

Deep Neural Network Approach to Phase Detection Autofocus. Unlike conventional PDAF algorithms easily fails on noisy data, the proposed AF-Net, a CNN-based approach, enhances the robustness and completes the autofocus in 2 lens movements.

Unsupervised Learning for MRI Image Registration. Our unsupervised learning based framework performs coarse-to-fine registration and yields accurate alignment between multi-session rectal data.

Deep Learning on OCT Image Classification. Our full-field OCT machine is able to capture cellular level information, thereby facilitates the development of a deep learning algorithm for SCC stage classification.

HONOR & AWARDS

Department Fellowship	Oct. 2020 - Jul. 2021
Electrical and Computer Engineering, UCSD	San Diego, CA
Merit Award	Jun. 2020
LITEON Technology Corp.	Taipei, Taiwan
First prize of Undergraduate Innovation Award	Sep. 2019
Electrical Engineering, NTU	Taipei, Taiwan
College Student Research Creativity Award	Sep. 2019
MOST Taiwan	Taiwan
6th place of AI Rush	Aug. 2019
Naver and LINE	$Chuncheon,\ Korea$
College Student Research Scholarship	Jul. 2018 - Apr. 2019
MOST Taiwan	Taiwan

ACADEMIC SERVICE

Journal Reviewer	
Journal of Imaging Informatics in Medicine	2024
Computer Systems Science and Engineering	2023
IEEE Access	2021
Teaching Assistant	
ECE 45: Circuits and Systems, UCSD	Sep. 2024 - Dec. 2024
ECE 45: Circuits and Systems, UCSD	Sep. 2023 - Dec. 2023
CSE 142: Computer Architecture Software Perspective, UCSD	Aug. 2023 - Sep. 2023
ECE 65: Components & Circuits Lab, UCSD	Jul. 2023 - Aug. 2023
EE 1006: Cornerstone EECS Design and Development, NTU	Feb. 2019 - Jul. 2019
EE 1006: Cornerstone EECS Design and Development, NTU	Feb. 2018 - Jul. 2018

SKILLS

Frameworks PvTorch, OpenCV

Programming Language Python, C++, Verilog, Matlab, Latex