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Abstract

End-to-end optimization, which integrates differentiable op-
tics simulators with computational algorithms, enables the
joint design of hardware and software in data-driven imag-
ing systems. However, existing methods usually compro-
mise physical accuracy by neglecting wave optics or off-
axis effects due to the high computational cost of model-
ing both aberration and diffraction. This limitation raises
concerns about the robustness of optimized designs. In this
paper, we propose a differentiable optics simulator that ac-
curately and efficiently models aberration and diffraction in
compound optics and allows us to analyze the role and im-
pact of diffraction in end-to-end optimization. Experimen-
tal results demonstrate that compared with ray-optics-based
optimization, diffraction-aware optimization improves sys-
tem robustness to diffraction blur. Through accurate wave
optics modeling, we also apply the simulator to optimize the
Fizeau interferometer and freeform optics elements. These
findings underscore the importance of accurate wave optics
modeling in robust end-to-end optimization.

1. Introduction
The interdependence between optics and downstream algo-
rithms is pivotal in imaging system design. To leverage this
interdependence and achieve joint designs, end-to-end dif-
ferentiable models, which incorporate a differentiable op-
tics simulator and a computer vision algorithm, have been
applied to simultaneously optimize hardware and software
across a range of vision tasks [5, 18, 22–25, 29, 30]. Given
a dataset of training images, the differentiable optics simu-
lator models corresponding measurements taken by the op-
tics system, and the computer vision algorithm extracts in-
formation from simulated measurements. With a differen-
tiable simulator and algorithm, a loss function scores task
performance and drives the optimization of the optics and
algorithm parameters via backpropagation.

A notable challenge in end-to-end optimization is incor-
porating wave optics effects in large field-of-view (FoV)
and analyzing how the fidelity of optics simulation impacts
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Figure 1. End-to-end optimized lens architectures and recon-
struction models using ray and wave optics. By taking diffrac-
tion into account, our wave-trained model yields sharper recon-
struction results than the baseline using ray optics.

overall system optimization. Computational expense im-
poses a limitation on exploring the effects of realistic op-
tical modeling, particularly when integrating wave optics.
To model the wave optics effects of a ray, we must account
for its diffraction effects across the entire sensor rather than
simply tracing its path. This complexity intensifies as the
number of rays and sensor pixels increases. Therefore,
many end-to-end designs simplify the physics models by
using ray optics, which neglects diffraction, to simulate
light transport [5, 24, 30]. Even though some simulators do
take diffraction into account, they still make assumptions of
thin-phase surfaces [22, 28] or shift-invariance [2, 9, 23].
These approaches fail to model realistic multi-element and
compound optics designs, limiting the space of possible
lens designs. Although recent frameworks model more re-
alistic wave optics [4, 31], their accuracy and efficiency in
different configurations remain questionable, and the signif-
icance of wave optic effects on system optimization remains
an open problem.

In this paper, we propose an accurate, efficient, and dif-
ferentiable optics simulator, which uses ray tracing with
Rayleigh-Sommerfield integral [7] to model diffraction and
off-axis aberrations in compound optical systems without
thin-phase or paraxial approximations. To address the com-
putation costs of modeling diffraction in large FoVs, we use



an interpolation method to approximate the measurements
with a subset of point spread functions (PSFs). By provid-
ing accurate and efficient wave optics rendering, the pro-
posed simulator enables us to incorporate diffraction into
end-to-end optimization and analyze its role and impact on
imaging system design.

Unlike systems optimized solely under ray optics as-
sumptions, our wave optics model guides the system to a
solution with weaker diffraction. An example of lens archi-
tecture and system performance optimized by ray and wave
optics is shown in Fig. 1.

Our contributions are
• We propose a differentiable model that accurately ac-

counts for aberration and diffraction in compound optical
systems. With efficient rendering, the model is compati-
ble with end-to-end optimization.

• We analyze the role of diffraction in end-to-end optimiza-
tion, and demonstrate that neglecting diffraction leads
to suboptimal lens and algorithm configurations. Con-
versely, by accurately modeling diffraction, our model at-
tains superior solutions.

• The proposed simulator is applicable to a wide range of
wave-optics-based imaging systems, including interfero-
metric setups and freeform optical systems.

2. Related Work

2.1. End-to-End Optimization.
Conventional lens designs construct a merit function, which
combines lens properties and transfer function quality, to
optimize optics systems [16]. Nonetheless, the merit func-
tions are not guaranteed to reflect computer vision task per-
formance [6, 30]. To address this issue, end-to-end op-
timizations use task performance to concurrently improve
hardware and software. Through the cooperation between
differentiable optics simulators and inference algorithms on
a large dataset [5, 9, 24, 30], end-to-end optimization pro-
vides a data-driven design that addresses the interdepen-
dence among optics, algorithms, and tasks [6].

End-to-end optimization has been widely applied to im-
age reconstruction [6, 13, 14, 18, 22, 23] and restoration
[8, 33]. Sitzmann et al. extend the depth of field on compu-
tational cameras [23]. Peng et al. achieve high FoV image
reconstruction [18]. Shi et al. recover unobstructed scenes
by a diffractive optical element and a point-PSF-aware neu-
ral network [22]. The strategy has also been applied to se-
mantic information extraction. Baek et al. acquire depth
information from hyperspectral imaging by jointly optimiz-
ing diffractive optical elements and a network [2]. Kell-
man et al. recover phase information by jointly optimizing
coded-illumination patterns for an LED array and an un-
rolled physics-based network [11]. Pidhorskyi et al. de-
velop a differentiable ray tracer for depth-of-field aware

scene intensity recovery [19]. Yang et al. optimize off-axis
aberration performance for image classification [30]. Cote
et al. optimize lens materials and structures for object de-
tection [5]. In these frameworks, end-to-end optimization
offers task-specific optics and algorithms.

2.2. Balancing Accuracy and Efficiency in Differen-
tiable Optics Simulation

A notable concern in end-to-end optimization is the compu-
tational cost of differentiable optics simulation [27, 31]. Be-
cause end-to-end design usually requires complex physics
simulation to generate measurements from a large imaging
dataset, complicated gradient propagations are needed to
model the relation among optics parameters, measurements,
and semantic information [27]. To address the cost in large
FoV differentiable rendering, simplified physics models are
usually adopted. Peng et al. adopt the thin phase assump-
tion to optimize thin-plate lens in large FoV imaging re-
construction [18]. Sun et al. use ray optics to model dif-
ferentiable ray tracing in complex lens model [24]. Cote
et al. use ray optics with ray aiming to improve the accu-
racy of simulating lenses with strong pupil aberrations [5].
Although these methods manage to reduce the computation
costs, their approaches cannot model wave optical effects.

It is also common to model simplified wave optical ef-
fects. Sitzmann et al. use Fresnel propagation to model
wave optics in diffractive optics but assume the system
is shift-invariant [23]. Shi et al. incorporates diffractive
optics and a lens using the thin phase assumption [22].
He et al. compute PSFs with diffraction theory in shift-
variant systems [9]. Tseng et al. replace the entire imaging
pipeline with a neural network to render PSFs [26]. Wei et
al. model off-axis diffraction using the angular spectrum
method (ASM) [28], but assume the system is a thin-phase
single lens. All these assumptions limit their applicability
to compound optical systems.

Chen et al. [4] developed a ray-wave optics simulator
that calculates diffraction at the exit pupil. A concurrent
work by Yang et al. uses an ASM-based approach to model
a hybrid lens-diffractive optic system [31]. Although these
two frameworks provide more realistic wave optics mod-
eling, their efficiency and robustness to various lens sys-
tems remain questionable. Moreover, an unexplored prob-
lem for these frameworks is the difference between using
ray and wave models during lens and network training. In
our work, we adopt a differentiable rendering method that
models diffraction from rays and use it to explore the sig-
nificance of accurate wave modeling in end-to-end design.

3. Differentiable Optics Model
Our differentiable simulator is designed to accurately and
efficiently capture both aberration and diffraction in com-
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Figure 2. Our proposed differentiable wave optics simulator. Given an input scene and lens configuration, we first resample the scene
based on the lens’ pre-distortion map. Next, we generate diffraction-aware PSFs using our wave optics simulator. Finally, we interpolate
the convolution of the resampled scene with the PSFs to obtain our final measurement. During lens optimization, measurement gradients
are back-propagated to the lens parameters.

pound optics systems, making it a robust rendering model
and providing scalable end-to-end optimization.

An overview of our differentiable hybrid ray-wave imag-
ing simulator is shown in Fig. 2. Given a point light source
at x = (x, y, z) and an optical system with sequential re-
fractive surfaces, our model incorporates a differentiable
ray tracer [27] and Rayleigh-Sommerfield integral [7] to ac-
count for wave optics effects in PSF h(u|x), where u de-
notes sensor pixel position. We describe PSF rendering in
detail in Sec. 3.1. Furthermore, given scene intensity b(x),
the resulting measurement I(u) is derived from the super-
position integral of incoherent PSFs [4]:

I(u) =

∫
b(x)h(u|x)dx. (1)

However, directly computing Eq. 1 across the entire
FoV is computationally intensive, requiring full-resolution
PSF rendering for every point source. To address this chal-
lenge, we develop an efficient interpolation method that bal-
ances accuracy and computational cost. The approach in-
volves sampling a subset of PSFs and using interpolation to
approximate the full measurement by convolving the sub-
set PSFs with their corresponding sub-scene intensities [3],
Details of this interpolation technique are provided in Sec.
3.2. With accurate and efficient optical modeling, including
diffraction, off-axis aberrations, and geometric distortions,
the simulator improves the robustness of data-driven lens
design and allows for a deep exploration of wave optics ef-
fects in imaging applications.

3.1. PSF Rendering
A conceptual flow of our wave optics model is illustrated
in Fig. 3. To compute a PSF, we first use geometric ray
tracing to sample the wavefront map in the exit pupil, and
then propagate the complex field of the wavefront map to
the sensor plane. In ray tracing, we use Newton’s Method
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Figure 3. Our wave optics simulator. We trace rays emitted from
a point source o to the reference sphere on the system’s exit pupil,
and compute intersections {ρi} and associated phase on a wave-
front map. We then perform free-space propagation toward the
sensor to generate a PSF. XP: Exit Pupil. Ref: Reference.
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Figure 4. Approximating unsampled PSFs. Our system first
samples PSFs h′(u; ·) on a regular grid. Next, by exploiting the
isoplanatic property, it approximates off-grid PSFs ĥ(u; ·) by in-
terpolating shifted and scaled versions of nearest samples h′(u; ·).

[24, 27] to calculate the intersections between rays and sur-
faces and use Snell’s Law to model refractions. The wave-
front map is then calculated in the reference sphere, whose
center and radius are determined by the intersection be-
tween the chief ray and the sensor plane, and the distance
between the exit pupil and the sensor, respectively.

Therefore, the problem amounts to calculating the ampli-



tude and phase of the complex field at the reference sphere.
By noting that the exit pupil is an image of the aperture stop,
we model the amplitude by the square root of the aperture
stop transmittance. On the other hand, the phase at the refer-
ence sphere is determined by the optical path length (OPL)
δ calculated by

δ =

∫
C

n(s)ds, (2)

where n(s) is the 3D refractive index of the system and C
is the path that a given ray takes from the light source to the
reference sphere [10].

It is notable that the phase of complex values across
the reference sphere, called the wavefront error map, re-
flects the degree of focusing [21]. When the system is in-
focus, the reference sphere exactly matches the wavefront,
and the phase is constant on the sphere. Otherwise, the
mismatch between the actual wavefront and the reference
sphere causes phase variations across the reference sphere.
Moreover, compared with the planar pupil field used by
ASM-based modeling [28, 29], the spherical structure ef-
fectively reduces the phase variation, and hence alleviates
the sampling requirement. In other words, we model the
wavefront error map on the reference sphere because of its
interpretability, efficiency, and compatibility with our prop-
agation model, but the choice of the reference geometry is
arbitrary and depends on the propagation model [16, 21].

Consequently, for a ray piercing the reference sphere at
ρi = (ρxi

, ρyi
, ρzi), we model the complex field by

v(ρi) = ai exp (jkδi), (3)

where ai is the amplitude, k is the wave number, j =
√
−1,

and δi is the optical path length.
As shown in Fig 3, the propagation from the reference

sphere to the sensor is in free space. The total intensity,
h(u), at sensor coordinate u is computed by the Rayleigh-
Sommerfeld integral [7], which we Monte-Carlo evaluate
with N coherent rays by

h(u) =
1

Nλ2

∣∣∣∣∣
N∑
i=1

v(ρi)
exp (jk|r⃗u,i|)

|r⃗u,i|
cos(θu,i)

∣∣∣∣∣
2

, (4)

where r⃗u,i denotes the vector from ρi to sensor coordinate
u, and θu,i is the angle between r⃗u,i and normal vector of
the reference geometry at ρi.

3.2. Approximating Superposition Integral
Although we can render PSFs with wave optics effects, the
high computational costs make it challenging to exhaus-
tively compute all PSFs. A common way to alleviate this
cost is to assume the system is shift-invariant and approxi-
mate Eq. 1 with a single convolution between the on-axis

PSF and scene intensities [7]. However, this assumption
is overly restrictive as it does not model common off-axis
aberrations such as coma, astigmatism, and field curvatures.

Therefore, we assume that PSFs are locally isoplanatic;
the system is shift-invariant over a sufficiently small area.
This allows us to sample a small subset of PSFs and approx-
imate the superposition integral through a sequence of con-
volutions, thereby saving computational costs while main-
taining the ability to model off-axis aberrations.

To facilitate the derivation, we parameterize scene inten-
sities b(x) and PSFs h(u;x) in terms of sensor coordinates
{u} as follows. Given a world coordinate x and lens distor-
tion function d(·), we compute the intersection ux = d(x)
between the non-paraxial chief ray emitting from x and the
sensor plane. Because the function is one-to-one, the scene
intensities b(x) and PSF h(u;x) can be re-parameterized as
b′(ux) and h′(u;ux), respectively. An example of distorted
coordinates is visualized in Fig. 2. Because the distortion
function d(·) only determines the input scene content, we
only consider it in the inference, but not back-propagation.

Fig. 4 shows an example of approximating a PSF orig-
inating from an unsampled world coordinate xj according
to PSFs {h(u;uxi)} originating from sampled world coor-
dinates {xi}. For an unsampled PSF centered at uxj, we
model it as the weighted sum of the known neighboring
PSFs, which are aligned to the same location:

ĥ(u;uxj) =
∑
i

wi(uxj)h
′(u−∆ij ;uxi), (5)

where ∆ij = uxj − uxi is the center-to-center distance, in
the sensor space, between the sampled PSF i and unsampled
PSF j. wi(uxj) determines the weight of the sampled PSF
i when approximating the unsampled PSF centered at uxj.

Therefore, we rewrite Eq. 1 by substituting the general
form for the shift-varying PSFs found in Eq. 5:

I(u) =
∑
ux

b′(ux)
∑
i

wi(ux)h
′(u+ uxi − ux;uxi)

=
∑
i

∑
ux

b′′i (ux)h
′(u+ uxi − ux;uxi), (6)

where b′′i (ux) = b′(ux)wi(ux) represents the weighted la-
tent image, which consists of input scene intensities dis-
torted by the lens distortion curve and weighted by wi(·).

We observe that Eq. 6 is a sum of convolutions between
the shifted version of sampled PSFs and the corresponding
weighted latent image:

I(u) =
∑
i

∑
ux

b′′i (ux)hi(u− ux)

=
∑
i

b′′i ∗ hi (7)
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Figure 5. Rendering measurement with a subset of PSFs. Given a latent image b′, we first generate weighted images b′′i . Next, we
generate PSFs hi at the centers of weighted images and pair them to corresponding PSFs. Finally, we convolve weighted images and PSFs
(hi ∗ bi′′) and sum them up to obtain the measurement I .

where hi(u) = h′(u+ ui;uxi). Fig. 5 illustrates an ex-
ample of how we pair weighted images and PSFs, convolve
them with each other, and sum up the convolved images to
compute the measurement.

Using the chain rule, gradients can be back-propagated
from the measurements I through the wave-optics PSFs
h(u), the complex field v(ρi) on the reference sphere, and
ultimately to the lens parameters. This differentiability en-
ables precise modeling and analysis of the interactions be-
tween lens configurations and wave-optics effects on the
measurements. In the subsequent section, we incorporate
this differentiable wave-optics simulator into computer vi-
sion algorithms, allowing analysis of the impact of wave-
optics effects on optical systems tailored for vision tasks.

4. Experiments

With the simulator, we conduct joint optimization of optics
systems and scene reconstruction algorithms, with a focus
on analyzing the role of diffraction in end-to-end optimiza-
tion. To the best of our knowledge, it is an unexplored
experimental flow to analyze the requirements of physics
accuracy in end-to-end optimization. We also analyze the
rendering and interpolation accuracy of our simulator and
extend the simulator to interferometry and freeform optics.

4.1. PSF Rendering
In Fig. 6, we present monochromatic PSFs (wavelength:
532 nm) generated by our simulator alongside those from
existing methods [4, 16, 28, 31] under various conditions.
Specifically, we render on-axis PSFs for an in-focus and
out-of-focus Cooke Triplet lens, and off-axis PSFs at 35°
and 40° from a singlet lens. The Huygens PSF computed
using Zemax serves as the reference, and we quantify simi-
larity to it using the structural similarity index (SSIM). Ad-
ditionally, we evaluate the efficiency by the ray count and
the computational time for each simulator.

Among ray-tracing-based approaches, our method
demonstrates superior accuracy and efficiency across most
scenarios. The only exception occurs in the in-focus case,
where our simulator requires more rays than Zemax-FFT
does. However, our approach achieves higher accuracy
while maintaining a shorter runtime, highlighting its effi-
ciency and precision.

It is notable that ASM-based methods, Wei et al. [28],
Yang et al. [31], are sensitive to defocus. This is because
as the system becomes increasingly defocused, phase vari-
ations across the pupil plane and propagation kernel are ex-
tremely rapid. However, ASM requires discretizing pupil
field and propagation function on a 2D grid, which restricts
the ability to capture rapid phase variation, resulting in de-
graded accuracy and efficiency for ASM-based approaches.
Although Chen et al. [4] allows flexible ray distribution,
their wave modeling does not account for the magnitude
changes brought by |r⃗u,i| in Eq. 4, and use projected |r⃗u,i|
onto ray directions, instead of actual values. Therefore,
their method fails to capture the magnitude changes over
large spot sizes caused by defocusing. Furthermore, de-
focusing also makes Airy disk, a common tool to evalu-
ate diffraction in perfect lenses, an unreliable approach to
model wave optics effects. The results show that our sim-
ulator provides higher robustness, accuracy, and efficiency,
in defocusing and large FoV systems, which easily occur in
end-to-end optimization.

4.2. System Optimization Setup
In our imaging rendering process, we simulate beam prop-
agation across the red, green, and blue light channels, com-
pute the corresponding measurements for each wavelength,
and then apply the Bayer filter to subsample these measure-
ments. This results in blurred and mosaicked data.

We perform both ray-based and wave-based end-to-end
optimization to jointly design lens systems and a U-Net
[20] for scene reconstruction from system measurements.
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Figure 6. PSFs rendered by different simulators under differ-
ent conditions. Unlike existing simulators [4, 16, 28, 29], ours
avoids wavefront discretization and remains robust to defocus and
large FoVs, achieving the highest accuracy and efficiency. The tu-
ple (SSIM, ray count, time in sec.) highlights the best performance
in red. As the Airy disk does not use ray-tracing, we skip its ray
count and do not compare its time with others. Zoom in for details.

To compare their robustness to diffraction effects, we use
wave optics in evaluation. Input scenes are drawn from the
DIV2K dataset [1], and lens configurations include varia-
tions in aperture radii and complexity, encompassing sin-
glet, triplet, and six aspheric lenses.

For optimization, we utilize the Adam optimizer [12] to
adjust both the network and lens parameters. The loss func-
tion is a weighted sum of root-mean-square error (RMSE)

PSF 

(b) Ray-Trained, Ray-Tested

Reconstruction 
(a) Overlayed lens architecture

PSF Reconstruction 

(c) Ray-Trained, Wave-Tested

Wave-trained

Ray-trained
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Figure 7. An analysis of ray- and wave-trained systems. The
ray-trained system pursues minimal geometric spot size (b) but
neglects diffraction blur (c). The wave-trained system has a larger
geometric spot size (d), but a lower effective focal length (EFL) to
control diffraction, yielding better reconstruction performance (e).
PSF size: 0.044 mm2

and perceptual loss (LPIPS) [32] between the normalized
input scene intensities and the reconstructed results. To
keep a consistent FoV for fair comparisons, whenever the
focal length varies in optimization, we adjust the sensor size
accordingly.

In addition to assessing reconstruction with RMSE and
LPIPS, we use two metrics to quantify the disparity between
ray- and wave-trained lenses: The mismatch between their
F-numbers (MF) and the relative root mean squared error
(RRMSE) of optimizable variables. All experiments were
implemented on an Nvidia A40 GPU using PyTorch [17].

4.3. Demosaicking and Reconstruction

We summarize the reconstruction results in Table 1, which
consistently uses wave optics in evaluation. Notably, with
lenses having a 0.1 mm aperture radius, wave-training and
ray-training yield different configurations and reconstruc-
tion performance. In Fig. 7, we visualize ray- and wave-
trained lens configurations and associated PSFs and recon-
structions at different testing situations. As shown in Fig. 7
(a), the wave-trained lens changes its architecture to shorten
the focal length and weaken diffraction. On the other hand,
the ray-trained lens focuses on minimizing RMS spot size,
as shown in Fig. 7 (b).

Although the ray-trained system achieves a smaller geo-
metric spot size, as shown in Fig. 7 (b) and (d), it fails to ac-



Table 1. Reconstruction performance on wave optics rendered
measurements (RMSE / LPIPS) and lens disparity.

AR Training physics MF RRMSEWave Ray
Singlet Lens

0.1 0.075 / 0.181 0.089 / 0.451 1.11 5.1×10−3

0.3 0.065 / 0.076 0.063 / 0.073 0.108 6.8×10−4

Cooke Triplet Lens
0.1 0.106 / 0.265 0.148 / 0.772 8.689 0.580
0.3 0.104 / 0.230 0.112 / 0.483 0.073 4.8×10−3

Six Aspherical Lenses
0.1 0.085 / 0.368 0.104 / 0.604 6.873 0.263
0.3 0.067 / 0.173 0.071 / 0.242 0.432 0.060
AR: Aperture radius (unit: mm)

count for diffraction blur. When evaluated by accurate wave
modeling, as shown in Fig. 7 (c) and (e), both PSF qual-
ity and reconstruction performance degrade. In contrast,
while the wave-trained system slightly sacrifices geomet-
ric spot size, its optimized lens architecture effectively mit-
igates diffraction, the actual PSF-limiting factor, enhancing
diffraction-limited resolution and producing sharper recon-
structions. This highlights the critical role of diffraction in
end-to-end optimization and the risks of neglecting it.

Table 1 also shows that increasing the aperture radius
from 0.1 to 0.3 mm reduces the mismatch between lens
designs and the performance gap arising from different
physics models. At a 0.1 mm aperture, the diffraction spot
size significantly exceeds the geometric spot size, allow-
ing the system to adjust its structure to balance aberration
and diffraction effects. However, as the aperture increases,
the system becomes aberration-limited, reducing the incen-
tive to trade aberration performance for diffraction control.
Moreover, compared with the singlet lens, the Cooke triplet
and six-asphere designs have higher structural flexibility,
and hence exhibit more variation in lens configurations.

We further investigate the impact of diffraction in the
optimization of aberration-limited optics in Fig. 8. The
experiments are conducted in a singlet lens at a 30° off-
axis field point with wavelength 440 nm. As observed,
despite structural differences between wave- (hw) and ray-
PSF (hr), their spectra remain similar at low frequencies,
where the energy of natural image (IN ) spectrum is con-
centrated. Thus, their convolved sub-scenes, hw ∗ IN and
hr ∗ IN , exhibit negligible MSE. The MSE is only no-
ticeable between measurements from inputs with rich high-
frequency contents, such as hw ∗ IS and hr ∗ IS , which are
rare in existing datasets. As a result, with natural imaging
datasets and aberration-limited systems, diffraction plays a
minor role in end-to-end optimization.

4.4. Interpolation
To assess interpolation accuracy across different FoVs and
lens complexities, we use measurements rendered with 969
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Figure 8. Comparing ray and wave measurements in an aber-
ration limited system. The key spectral difference between ray-
and wave-PSFs lies in high frequencies, affecting measurements
only when the image has rich high-frequency components. Thus,
for natural images, both systems receive similar training data and
yield similar configurations. The MSE is measured using normal-
ized measurement intensity.
Table 2. The SSIM between sparsely interpolated and reference
measurement and time elapsed in interpolation.

Lens FoV Number of PSFs in interpolation
9 25 81 289

Singlet

5° 0.987 0.990 0.995 0.999
15° 0.894 0.954 0.974 0.996
30° 0.815 0.842 0.871 0.981

Time 7.66 12.38 36.10 96.50

Cooke
Triplet

5° 0.995 0.995 0.996 0.999
15° 0.994 0.995 0.996 0.999
30° 0.889 0.942 0.957 0.993

Time 7.21 9.71 25.47 62.33

Six
Aspheric

5° 0.998 0.998 0.998 0.999
15° 0.996 0.996 0.997 0.997
30° 0.998 0.998 0.998 0.999

Time 8.70 13.68 37.03 104.06

PSFs, the maximum feasible under hardware constraints,
as a reference and compute its disparity to sparser interpo-
lated measurements, using PSF counts ranging from 9 to
289. As summarized in Table 2, systems with larger FoVs
require more PSFs to reduce the discrepancy between in-
terpolated and reference measurements. This is due to in-
creased aberrations in wide FoVs, which weaken the iso-
planaticity among PSFs. Furthermore, as lens complex-
ity increases, the system has weaker aberration, and fewer
PSFs are needed for accurate rendering. Table 2 also reports
the computational time of interpolating a single image. As
shown, with denser interpolation, end-to-end optimization



(a) On-Sim. (b) On-Real. (c) Off-Sim. (d) Off-Real.

Figure 9. Comparing simulated and real PSFs. By send-
ing monochromatic parallel beams into a physical lens, we mea-
sure real on- and off-axis (15°) PSFs (Real) and compare them
with our simulated measurements (Sim.). Our simulator closely
matches the real measurements by accurately modeling diffraction
and aberration. PSF size: 0.217 (on) and 0.62 (off) mm2.

becomes computationally expensive. Thus, selecting an ap-
propriate number of PSFs is crucial to balancing computa-
tional efficiency and rendering accuracy, with the optimal
choice depending on the FoV and lens complexity.

4.5. Hardware Validation
We validate the physical accuracy of our simulator against
real-world hardware implementations. In Fig. 9, we
send on-axis (0°) and off-axis (15°) parallel monochromatic
beams (wavelength: 532 nm) through a plano-convex lens
(model 011-1580) onto a sensor (UI-3882LE0M) to gener-
ate PSFs and compare with simulated ones. As observed,
our simulator accurately models the diffraction patterns and
off-axis aberration, yielding similar structures in real and
simulated PSFs. The SSIM between real and simulated
PSFs are 0.781 (on-axis) and 0.853 (off-axis). These results
confirm the reliability of the proposed simulator.

4.6. Applications
Fizeau Interferometer We apply the simulator to a Fizeau
interferometer [15] as follows: a coherent input wavefront
(wavelength: 650 nm) reflects off the test surface, whose
profile determines the interference patterns captured by the
sensor. To establish a reference, we first generate measure-
ments with a reference surface parameterized by curvature
and quadratic coefficients, as shown in Fig. 10 (c) and (d).
We then employ differentiable rendering to recover the sur-
face parameters, initialized with randomly perturbed values
(Fig. 10 (d)) with corresponding measurement (Fig. 10
(a)). The optimization is driven by the MSE between the
recovered and reference measurements. Because our wave
optics model accurately captures phase interference, which
reflects surface structures, both the surface (Fig. 10 (d)) and
measurement (Fig. 10 (b)) are accurately recovered. This
experiment demonstrates the applicability of the proposed
model to coherent interference.
Freeform Optics We perform differentiable rendering on
freeform optics imaging, which is obtained by illuminating
the surface with a coherent plane wave (wavelength: 650
nm) and accounting for coherent ray interactions. Specifi-
cally, we recover the target measurement in Fig. 11 (d) by
surface optimization. The surface is randomly initialized

(d) Surface heights (mm)(a) Initial (b) Recovered (c) Reference 
0

2
1𝑒!"

−0.2 0.2
0

8
1𝑒!#

Figure 10. Recovering a quadratic surface based on Fizeau
interferometer measurements. Setup: A coherent wavefront is
reflected by a quadratic surface, and the resulting interference pat-
tern is detected by the sensor. The interference pattern is deter-
mined by the surface geometry. By accurately modeling interfer-
ence, our differentiable wave optics model results in accurate sur-
face recovery (d). Sensor size: 1.6 mm2.

(a) Initial (d) Reference (b) Ray-Trained (c) Wave-Trained

Figure 11. Optimizing a freeform optical surface under coher-
ent illumination. Setup: A monochromatic plane wave is mod-
ulated by a freeform optical surface. Due to its coherence, the
modulated wavefront interferes with itself in propagation, which
can only be accounted for by wave optics. As a result, our wave-
trained surface yields accurate recovery, which is not achievable
by the ray-trained one. Sensor size: 5.8 mm2.

with measurement in Fig. 11 (a), and we conduct ray- and
wave-optimization for surface recovery, both are guided by
minimizing the MSE between rendered and target measure-
ments. Because of its coherent nature, accounting for wave
optics is required for accurate light propagation. Therefore,
as shown in Fig. 11 (b) and (c), the recovery is accurate
only when wave optics effects are incorporated. These re-
sults underscore the versatility and importance of our differ-
entiable wave optics simulator in non-lens optical systems.

5. Conclusion
End-to-end optimization exploits the interdependence
between optics and computational algorithms in imaging
systems. However, due to insufficient accuracy and
efficiency, existing frameworks have not analyzed the
requirements of modeling wave optics in simulation in
system designs. In this paper, we develop an efficient,
accurate, and differentiable wave optics simulator to
analyze the role of diffraction in end-to-end optimization.
Experimental results show that modeling light transport
with and without diffraction yields different lens configu-
rations and algorithm adaptations. When diffraction is not
considered in system design, performance degradation can
occur under diffraction-limited conditions. These findings
highlight the critical importance of physics-aware modeling
for imaging system designs. The importance of modeling
wave optics is further demonstrated in differentiable
rendering in Fizeau interferometer and freeform optics.
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