
Digital System Design Final Project: Pipelined MIPS

姚鈞嚴 (B04901032), 傅子興 (B04901015), 何吉瑞 (B04507009)

Group 3

Department of Electronic Engineering

Abstract—This report describes our pipelined MIPS design.

Features such as data path implementation, hazard handling,

branch prediction, memory design (including register file and

cache), multiplication and division will be introduced. We

accomplish both baseline and extension synthesis and achieve

1.90 μm2·s in baseline, 0.45 μm2·s in branch prediction, 120

μm2·s in level 2 cache, and 0.344 μm2·s in multiplication and

division.

Keywords—latch cells; data buffer; data propagating;

machine-learning-based branch prediction

I. INTRODUCTION

Pipelined architecture features in high throughput.
Nevertheless, if we implement MIPS by this approach, we
face many relating hazards such as data hazard, jump hazard,
load hazard, and branch hazard. Moreover, compared to MIPS
in textbook [1], the requirements for the final project need to
support the additional class of jump operations (e.g. j, jal, jr,
and jalr). Thus, when designing MIPS, we divide it into
several stages. First, we implement it without hazard handling.
Then, we introduce data hazard and jump hazard. Finally, we
complete load hazard and branch hazard. Next, extensions
merely modify the chip passing the baseline.

This report is organized as follows. Section II presents the
memory optimization, Section III presents the architecture
optimization, and Section IV presents the extension
optimization. Section V presents our synthesis settings and the
corresponding results. Finally, Section VI concludes the
report.

II. MEMORY OPTIMIZATION

Memory, especially cache, has played an important role of
the processor. Cache loads partial data from slow memory, or
DRAM, typically, outside the chip to reduce access time, and
hence, the higher the hit rate, the better the overall
performance. However, its area is comparatively large. Fig. 1
(a) shows that before we implement hazard handling, the area
of all memory blocks (register file, instruction cache and data
cache) occupy over 90% of the MIPS. The two issues above
are both the most sensitive part in terms of area × simulation
time value (AT value), implying that optimizing both area and
performance is our first policy. There are two different caches
required in this system: instruction cache (I cache) and data
cache (D cache). The former stores the instruction machine
code and the other stores data that MIPS accesses.

A. Bit Cells

From [2], we know that the memory blocks in general
processors is made up of SRAM. Though SRAM features in
high density and sufficiently fast access, the synthesis tool of
this project does not support the library. This makes us to
search for other approaches, and latch cells turn out to be the
solution. The area of a latch is half of the D flip-flop, showing
good potential, while it is hard to control latches since its
writable window is half of the clock cycle in comparison to its
edge-triggered counterpart.

Fig. 2 presents our solution to this problem. We first
observe the lower part. In fact, this is the circuit of clock
gating with some modifications. Its primary function is to
generate a time pulse to allow new data written into the latch
cell. Then, we observe the upper part. We find that latch cell
needs a data buffer to provide it a stable new data. We explain
the mechanism by the following instance. Suppose that a new
value needs to write a specific cell. When the clock rise-
triggers, data buffer obtains the value. Then, after propagation
delay of the rise-edged gated clock, the cell becomes
transparent and the value in it is refreshed. Finally, after the
gated clock signal turns off, the state in the cell keeps stable.
For reset configuration, since latch usually does not have a
reset-relating port, we can still reset it with the aid of the data
buffer and the appropriate gated clock signals.

The result on reducing area is marvelous, especially I
cache and D cache with more bits of tags and other flags like
valid. I cache benefits from 38% reduction [Table I], D cache
benefits from 40% reduction [Table II], and the entire MIPS
benefits from 35.8% [Fig. 1 (b)]. However, there exists
tradeoff such as lack of stability and less EDA tool support,
making the post-synthesis simulation cycle very large (about
6ns). In short, this method offer an alternative way to reach
similar AT value but features in small area.

B. Instruction Cache

I cache stores machine codes of a series of process,
transferred from assembly code with an assembler. When the
program counter (PC) inputs an assigned address, I cache
outputs the corresponding instruction code. Fig. 3 shows the
interface of our I cache. When I cache identifies the address
from proc_addr, it either directly gives out the data (to
proc_rdata) or stalls MIPS (proc_stall) and then requires data
from slow memory. We adopt the direct-mapping method (8
blocks × 4 words). A block includes 4 words (total 128 bits),
a valid bit and a tag (25 bits). Besides, we implement an
additional memory data buffer (128 bits) to store the data from
memory when mem_ready = 1.

Fig. 1. Area metric without hazard handling. (a) Distribution of blocks. (b)

Area reduction with latch-based memory.

Fig. 2. Schematic of latch-based memory.

To reduce area, we disable all write functionality. We
reduce all writing-relating ports, such as proc_write,
proc_wdata, and set mem_write and mem_wdata to constant
zero in order to fit slow memory interface. Fig. 4 shows the
schematic of the finite state machine (FSM) in I cache. When
the read access hits, I cache directly gives out the data without
stalling the system; otherwise, it jumps to READ and SAVE
state to require data from memory and stalls the system
concurrently. The separation of two states is to reduce the long
path from memory to proc_rdata and to avoid compressing too
much process in only half of a cycle as the slow memory
passes data at negative edge.

We further go through several structures. For the
comparison and conclusion of our experiment, please refer to
Table I.

1) Two-State: There are only two states in I cache, IDLE

and READ. The advantage is that the operation is the

simplest and minimize the number of cycles. However,

there is only half cycle to store data when the

mem_ready triggers, making it a bottleneck and hard

to reduce the simulation cycle time for post-synthesis

simulation.

Fig. 3. Instruction cache interface.

Fig. 4. The finite state machine of instruction cache.

Fig. 5. The finite state machine of instruction cache with pre-fetch

mechanism.

TABLE I. COMPARISON METRICS OF INSTRUCTION CACHE

 Period

(ns)

Cycle

Total time

(ns)

Area

(μm2)

AT value

(μm2·s)

Two-State 4.6 1997 9183.9 300940.5 2.76

Two-way 4.3 1997 8584.95 302123.6 2.59

Prefetch 4.8 1985 9525.6 315039.1 3.00

Latch-cell 6.1 2107.5 12855.75 260462.6 3.35

a. Testbench: hasHazard.

2) Two-Way Set Associative: It is another common type

of address mapping. To keep the same number of

words, there are total 4 sets, each with 2 elements

which stores its own valid, tag and 4 words. We apply

least-recently used as the replacement policy. The

post-synthesis simulation time is almost the same as

using direct mapping, but there is larger area because

of longer tags and the hardware of replacement.

3) Pre-Fetch: Pre-fetching is an idea that we can load

instructions from memory and handle continuous read

access from MIPS simultaneously. The reason of pre-

fetching tends to be a good strategy to I cache since

(a) (b)

State Function:

 IDLE: Keep on reading if

 hit

 READ: Read memory when

 read miss

 SAVE: Store data to cache

State function:

 IDLE: Keep on reading if hit

 PRE: load data from memory

 and handle requirement

 from MIPS

 READ: Handle read miss, access

 memory

Fig. 6. Data cache interface.

Fig. 7. The finite state machine of data cache.

TABLE II. COMPARISION METRICS OF DATA CACHE

Period

(ns)

Cycle

Total time

(ns)

Area

(μm2)

AT value

(μm2·s)

Three-State 4.4 2149 9453.4 296688.5 2.8

Two-way 3.9 3992.5 15570.75 303602.1 4.73

Latch-cell 6.1 2104.5 12837.45 254329.9 3.26

a. Testbench: hasHazard.

MIPS often requires instructions from cache in order,

and the used instruction is seldom used after executed.

As a result, keeping updating data in I cache may be a

good way to reduce miss rate and stalling cycles. We

use a preload control unit to handle this issue and only

pre-load next 4 words only if the index of the block

array is 0 now (the first word) to save much loading

time, and no beq, j, jal commands appear in the current

reading block to avoid wasted cycles. For the FSM,

please refer to Fig. 5. However, due to area overhead,

extra time cost for decision and actual existence of

loop instructions, we do not adopt this structure at last.

C. Data Cache

D cache is used to store and load data, controlled by lw, sw
command. As there is only a 32-word register file inside MIPS,
in order not to exceed the storage, MIPS have to communicate
with D cache. Fig. 6 shows the interface of our D cache. D
cache needs to handle both read and write access, and is
controlled by proc_read and proc_write. The reading process
is similar to I Cache (Section II-B), so we put emphasis on
write access. We also adopt the direct-mapping method (8
blocks × 4 words) while there are additional 8 bits to indicate

Fig. 8. Level 2 cache interface.

Fig. 9. The finite state machine of level 2 cache.

TABLE III. COMPARISION METRICS OF LEVEL 2 CACHE

Required Comparison Metrics

Avg. mem. access timeb

(cycles)

Total exe. Time

(ns)

Post-syn sim. period

(ns)

1.0432 129857.24 4.09

Detailed Post-Synthesis Simulation Result

Period

(ns)

Cycle

Total time

(ns)

Area

(μm2)

AT value

(μm2·s)

Reg cell 4.09 31750 129857.24 925727.99 120

Latch cellc 4.9 31672.5 155195.25 924699.4 144

a. Testbench: L2Cache.

b. Avg. mem. access time = HT1 + MR1×(HT2+MR2×MP2),

HT1 = 1, MR1 = 4%, HT2 = 1, MR2 = 2%, MP2 = 4

c. Latch cells are used only in register file

which block is dirty as we use write back as our writing
strategy. Besides, memory data buffer (128 bits) also exists in
D cache.

Fig. 7 shows the schematic of the FSM in D cache. When
the read or write access hits, D cache directly gives out or
writes the data without stalling the system; otherwise, it stalls
the processor, jumps to READ and SAVE state to require data
from memory if the assigned block is miss and clean, and
jumps to WRITE state if the assigned block is miss and dirty.
The reason of separating READ and SAVE states is the same
as accounted in I cache.

We further go through several structures. For the
comparison and conclusion of our experiment, please refer to
Table II. In terms of two-way set associative structure, since
the issue is the same as I cache, we omit the discussion. Thus,
we only analyze the reduction of states. The minimal states
can be only three in D cache, which include IDLE, READ and

State function:

 IDLE: Keep on read-

 ing and writ-

 ing if hit

 READ: Read memory

 SAVE: Store data to

 cache

 WRITE: Write memory

State function:

 IDLE: Keep on read-

 ing and writ-

 ing if hit

 READ: Read memory

 SAVE: Store data to

 cache

 WRITE: Write memory

Fig. 10. Write configuration of the register file.

WRITE. The advantage is the same as the case in I cache.
However, the negative-edge-triggered mem_ready forces all
the relating operations to finish in a half cycle, and as a result,
dominates the bottleneck in post-synthesis simulation.

D. Level 2 Cache

Level 2 cache (L2 cache) acts as a memory to level 1 cache
(L1 cache, including I cache and D cache), and acts as a cache
to slow memory. The existence of L2 cache may shorten the
access time for L1 cache, and thus reduce the miss penalty for
L1 cache. The interface of L2 cache is shown in Fig. 8. We
only support L2 cache to D cache. In RTL code design, we
use a wrapper to combine D cache and L2 cache, and make it
act effectively as the original D cache. We adopt the direct-
mapping method (64 blocks × 4 words). A block includes 4
words (total 128 bits), a valid bit, a dirty bit and a tag (22 bits).
Besides, we implement an additional memory data buffer (128
bits) to store the data from memory when mem_ready = 1.

Fig. 9 shows the schematic of the FSM in L2 cache. Most
of the design is similar to D cache except that when L2 cache
finishes write back, the state transfers to READ if L1_read =
1 while it transfers to IDLE if L1_write = 1 since the data from
L1 cache are 128 bits. Another difference is that when we
want to stall L1 cache, we pull down L1_ready to fit the
original function of mem_ready in L1 cache.

The comparison metrics required from the project and
other detailed post-synthesis simulation results are shown in
Table III.

III. ARCHITECTURE OPTIMIZATION

For a pipelined MIPS, there are total five stages, including
instruction fetch (IF), instruction decode (ID), execution (EX),
memory (MEM) and write back (WB). Fundamental large
blocks such as I cache, register file (RF), arithmetic logic unit
(ALU), D cache are located at the same stage as those in the
textbook [1]. In this section, we introduce how we arrange the
data paths and how we deal with hazards.

A. Register File Write Access Modification

In terms of writing data into RF, we have to consider the
relating control signals such as RegDst, Jal, and RegWrite.
For a typical design, the RegWrite signal enables the write
access while the others determine the address. Thus, the
address path includes these MUXes controlled by the two
signals. To avoid propagating RegWrite from ID stage to WB
stage, we handle these signals in the circuits as shown in Fig.
10. The first MUX for RegDst still exists. For Jal and
RegWrite signals, the address result is 31 (5'b11111) if both

Fig. 11. Merging the branch address with the adder for the program counter.

Jal and RegWrite are true, and is 0 (5'b00000) if RegWrite is
false since $zero (number 0) is always a constant zero,
implying that RF is not written. Thus, we use OR gate for Jal
and AND gate for RegWrite instead of MUXes to reduce the
area.

B. Bubble Reduction and Data Propagation

Directly storing the jump address into RF (jal and jalr)
seems efficient, but requires a bubble to avoid conflict with
WB stage. Instead, we propagate it to ALU, that is, we
additionally implement a MUX for the first input of ALU.
This condition occurs when the command is jal and jalr. Then,
a meaningless operation, logical left shift by zero bits,
executes in ALU. Thus, the value holds and correctly stores
into RF after the data paths of the remaining stages. Moreover,
for mfhi or mflo commands, we apply the same approach to
pass the value from register Hi or Lo, respectively.

As for beq, we handle it in ID stage. Conventionally, we
use an adder in ID stage to calculate the branch address and
pass the result to the MUX that chooses the next values of the
program counter (PC) [1]. However, since there is also an
adder in IF stage, we merge them so as to reduce area. Fig. 11
shows the concept. Here BranchAddr denotes the branch-
extended immediate. In regular cases, BranchHit is false, and
the result is sum of current PC address and 4. If BranchHit is
true, owing to the mechanism of pipelining, the result should
be the sum of current PC value and BranchAddr. Note that this
optimization cannot be applied to branch prediction since
without prediction, the difference between the PC value in the
ID stage and that in the IF stage is always 4, when we sense
beq in ID stage.

C. Arithmetic Logic Unit Optimazation

Based on the design, our ALU supports 10 functions
except for multiplication and division, both of which belong
to extension. Table IV lists the control codes and
corresponding functions. We divide the functions into four
classes (shift, logic, simple arithmetic, and multiplication/
division) via the most significant 2 bits. In terms of
multiplication and division, please refer to Section IV-B.

1) Shift: Shift type operations include sll, srl and sra. We

expect that directly typing register-transfer level (RTL)

codes may lead to large area (three shifters and a

MUX), so we implement Funnel Shifter [3]. Initially,

we need to generate a bus with 63 bits [Table V]. Then,

we use a large MUX to obtain the final shifted value

[Fig. 12]. Note that if we want to obtain a right-shifted

output, the number of shifts (Y[10:6]) needs to change

TABLE IV. CONTROL CODES OF ALU

ALUCtrl function Relating Instructions

0000
shift X left for Y[10:6]

bits

sll, jal, jalr, nop, mfhi,

mflo

0010
arithmetic shift X right for

Y[10:6] bits
srl

0011
logical shift X right for

Y[10:6] bits
sra

0100 X & Y and, andi

0101 X | Y or, ori

0110 X ^ Y xor, xori

0111 ~(X | Y) nor

1000 X+Y add, addi, lw, sw

1001 X-Y sub

1011 (X<Y)?1:0 slt, slti

1100 multiplicationa mult

1101 divisiona div

default output 0

a. For multiplication and division, the relating circuit is in new modules rather than the

original ALU block.

TABLE V. BUS VALUE FOR FUNNEL SHIFTER

Function Bus Value

sll Bus = {X, 31'b0}

srl Bus = {31'b0, X}

sra Bus = {{31{X[31]}}, X}

TABLE VI. MUX OUTPUT OF BOOLEAN FUNCTION UNIT

X[i] Y[i] and or xor nor

0 0 0 0 0 1

0 1 0 1 1 0

1 0 0 1 1 0

1 1 1 1 0 0

2) to one's complement. For instance, if we want to shift

left by 31 bits (5'b11111), we choose Bus[31:0] while

if we want to shift right by 0 bits (5'b00000), we still

choose Bus[31:0]. Note that 5'b00000 is the one's

complement for 5'b11111.

3) Logic: Logic type operations include and, or, xor, nor

and so on. We expect that directly typing RTL codes

may lead to large area overhead, so we implement

Boolean Function Unit [3]. In the original case, we

have to compute AND, OR, XOR, NOR first and

choose the correct logic function with a MUX, while

in our proposed case, two inputs directly control the

MUX to choose the truth value we compute first via

the least significant 2 bits of the control codes [Table

VI]. We therefore reduce the area.

4) Arithmetic: Arithmetic type operations include add,

sub, slt and so on. We expect that directly typing RTL

codes may lead to large area overhead (adder,

subtractor and comparator), so we implement adder-

subtractor [3]. If the function is slt, the ALU executes

subtraction and sense the compare flag. The practical

implementation is shown in Fig. 13.

Fig. 12. Output stage of Funnel Shifter.

Fig. 13. Adder-subtractor.

D. Hazard Handling

There are several types of hazard as follows, all of which
relate to the data refreshing of RF. In general, if the hazard
happens in EX stage, we need to pipeline the hazard control.
If the hazard happens in ID stage, we directly control it.

1) Data Hazard: This may happen if we sense the write

address of RF in EX stage is the same as the read

address of RF in ID stage. Hence, we forward the

pipelined data. More specifically, we link the data

from different stages (original EX, MEM, WB, and

pipelined WB) together to the two input ports of ALU

with 4-to-1 MUXes. In terms of pipelined WB, we

have to consider the case that we sense the hazard

between ID stage and WB stage, and hence, we need

to pipeline the data in WB stage.

2) Jump Hazard: This may happen when we sense jr or

jalr in ID stage. We also apply a MUX with the data

input from original ID, EX, MEM and WB stages with

the control signal named ForwardJump.

3) Load Word Hazard: This may happen when the lw

command executes in the EX stage and the command

in ID stage needs the data from D cache. Hence, we

need to generate a bubble in EX stage and stall the

process in both IF and ID stage, and the hazard belongs

to other types.

4) Branch hazard: This may happen when we sense beq

in ID stage. We directly forward the data to the

comparator, which is similar to jump hazard. However,

due to long critical path, we generate a bubble in EX

stage when EX stage and ID stage access the same

relating address of RF. In addition, if we sense lw in

EX stage, we generate two bubbles in EX stage since

Fig. 14. Finite impulse response filter with classifier.

Fig. 15. (a) MAC and classifier. (b) Performance of different types of branch

prediction architectures (based on the testbench for branch prediction).

we expect that the path from D cache to PC through

the branch comparator is long.

IV. EXTENSION OPTIMIZATION

There are three optional extensions in this project and we
accomplish all. The following describes how we optimize
these extensions. However, for L2 cache, please refer to
Section II-D, and for mfhi and mflo commands, please refer
to Section III-B.

A. Branch Prediction

After observing the branch result from all of the
testbenches, we discover that simply implementing a 2-bit
prediction unit does not effectively enhance the performance.
As a result, we look for other implementations. Actually, if we
record the branch result each time, we can construct a time
signal, that is, we can exploit a finite impulse response (FIR)
filter to generate the prediction [Fig. 14]. Whenever we obtain
a new branch result in ID stage, we shift the delay registers.
Then, when the MIPS sense the new branch command in the
IF stage, we obtain the MAC and classifier result to determine
the prediction. An exception happens if there are continuously
two branch commands and the one in the ID stage predicts
correctly. Since the delay registers does not shift yet, we need
to choose the forward values.

In terms of machine learning, we can regard branch
prediction as a classification problem, so we implement the
network as shown in Fig. 15 (a). The weights and the bias are
trained in advance. However, to reduce complexity of the
hardware, quantization is essential and we finally choose 4
bits. We first compute the MAC result, and activate it with a
step function, or in reality, by extracting the most significant
bit. Since five of the inputs are only 1 bit, the multiplication
is nothing but an AND function, which is a good news to
MAC. Accumulation is also supposed to be simple due to

Fig. 16. Finite state machine of the multiplier-divider.

quantization. Fig. 15 (b) shows the result of our proposed
implementation. Compared to original chip and the one with
2-bit prediction, ours only outputs three errors, an obvious
reduction.

B. Multiplication and Division

For simplicity, we propose a general FSM [Fig. 16] to
control both the multiplier-divider and the original processor.
When either multiplication or division commands (mult, div,
respectively) occurs in the IDLE state, the state machine stalls
the processor just like what caches do when they miss the data.
The state then changes to MULT (or DIV). After the allocated
cycles, the state becomes BUF and returns to IDLE in the next
cycle. With some shift operations, we use 8 cycles to compute
multiplication and 16 cycles to compute division, and the
registers, Hi and Lo, store the temporary result.

1) Multiplier: Fig. 17 shows the multiplier block. Since

there are 8 cycles and the data is 32 bits wide, we take

four product results (I, J, K, L) and shift-add them

together in each cycle. Fig. 18 shows the top view.

Note that the shift in the temporary is constant since

we execute multiplication from the most significant

bits.

2) Divider: In the divider cell, we need to determine

whether the difference is positive or not to select the

correct remainder [Fig. 19]. This remainder is then

sent to next stage iteratively to obtain the result of

division. By similar mechanisim in multiplication, we

build a divider block to calculate 2 iterations because

we use 16 clock cycles here.

Fig. 20 shows how we implement the two funcitons

together. Both blocks share the same inputs and their
temporary results propagate to register Hi and Lo.

V. SYNTHESIS SETTING AND RESULT

We use the required synopsys design constraints offered
by the teaching assistance, and only modify the cycle for
synthesis. The only constraint we add is that the tool supports
ungroup -all -flatten except for L2 cache, which means that
the generated gate level code is not classified to its original
module. However, this constraint make it difficult for us to
debug, so we only use t when we synthesize the final version

(a) (b)

Fig. 17. The multiplier block.

Fig. 18. Top view of the multiplier.

Fig. 19. The divider cell.

Fig. 20. The overall multiplier-divider.

of our design. For compile instruction, we use compile instead
of compile_ultra, and does not give any other flag. The

TABLE VII. POST-SYNTHESIS SIMULATION RESULT

.sdc

cycle

(ns)

Sim.

period

(ns)

Sim.

time

(ns)

Area

(μm2)

AT

value

(μm2·s)
hasHazard 3 2.93 6628.22 287086.35 1.90

BrPred 3 2.83 1498.09 300207.25 0.450

L2Cache 3 4.09 129857.24 925727.99 120

Mult/Div 3 3.21 1073.87 320492.88 0.344

synthesis results are shown in Table VII.

VI. CONCLUSION

 To design a MIPS is a hard task. Plotting the architecture
is necessary before we practically type the RTL code. After
gradually accomplishing each stage that we define in Section
I, we harvest the satisfying result. The steps that we minimize
the AT value follow the sensitivity and thus we first focus on
shrinking the area of memory, then compressing the timing of
cache, and finally, modifying local blocks and data paths.
However, due to clock delay, exploiting latch-based memory
may increase the simulation time. In addition, for
multiplication and division, we reduce the latency from 32
cycles to 8 and 16 cycles, respectively. Moreover, our MIPS
is more than a normal MIPS since we combine various
techniques, which we learn from different courses such as
(advanced) integrated circuit design and machine learning, to
this course. For instance, we achieve the prominent result of
branch prediction via machine learning. If we consider the
practical applications, we can store different weights and bias
in memory to deal with different types of predictions, or even
train the MIPS simultaneously when it executes, although it is
out of the scope of the specification according to this project.
According to our optimization techniques explained above,
we expect our MIPS to be the comparable one among all of
the groups.

REFERENCES

[1] D. Patterson and J. Hennessy, Computer organization and design, 5th
ed. 2017.

[2] "Static random-access memory", En.wikipedia.org, 2018. [Online].
Available: https://en.wikipedia.org/wiki/Static_random-
access_memory.

[3] N. Weste and D. Harris, Integrated circuit design, 4th ed. 2011.

