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Abstract—This report describes our pipelined MIPS design. 

Features such as data path implementation, hazard handling, 

branch prediction, memory design (including register file and 

cache), multiplication and division will be introduced. We 

accomplish both baseline and extension synthesis and achieve 

1.90 μm2·s in baseline, 0.45 μm2·s in branch prediction, 120 

μm2·s in level 2 cache, and 0.344 μm2·s in multiplication and 

division. 
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I.  INTRODUCTION 

Pipelined architecture features in high throughput. 
Nevertheless, if we implement MIPS by this approach, we 
face many relating hazards such as data hazard, jump hazard, 
load hazard, and branch hazard. Moreover, compared to MIPS 
in textbook [1], the requirements for the final project need to 
support the additional class of jump operations (e.g. j, jal, jr, 
and jalr). Thus, when designing MIPS, we divide it into 
several stages. First, we implement it without hazard handling. 
Then, we introduce data hazard and jump hazard. Finally, we 
complete load hazard and branch hazard. Next, extensions 
merely modify the chip passing the baseline. 

This report is organized as follows. Section II presents the 
memory optimization, Section III presents the architecture 
optimization, and Section IV presents the extension 
optimization. Section V presents our synthesis settings and the 
corresponding results. Finally, Section VI concludes the 
report. 

II. MEMORY OPTIMIZATION 

Memory, especially cache, has played an important role of 
the processor. Cache loads partial data from slow memory, or 
DRAM, typically, outside the chip to reduce access time, and 
hence, the higher the hit rate, the better the overall 
performance. However, its area is comparatively large. Fig. 1 
(a) shows that before we implement hazard handling, the area 
of all memory blocks (register file, instruction cache and data 
cache) occupy over 90% of the MIPS. The two issues above 
are both the most sensitive part in terms of area × simulation 
time value (AT value), implying that optimizing both area and 
performance is our first policy. There are two different caches 
required in this system: instruction cache (I cache) and data 
cache (D cache). The former stores the instruction machine 
code and the other stores data that MIPS accesses. 

A. Bit Cells 

From [2], we know that the memory blocks in general 
processors is made up of SRAM. Though SRAM features in 
high density and sufficiently fast access, the synthesis tool of 
this project does not support the library. This makes us to 
search for other approaches, and latch cells turn out to be the 
solution. The area of a latch is half of the D flip-flop, showing 
good potential, while it is hard to control latches since its 
writable window is half of the clock cycle in comparison to its 
edge-triggered counterpart. 

Fig. 2 presents our solution to this problem. We first 
observe the lower part. In fact, this is the circuit of clock 
gating with some modifications. Its primary function is to 
generate a time pulse to allow new data written into the latch 
cell. Then, we observe the upper part. We find that latch cell 
needs a data buffer to provide it a stable new data. We explain 
the mechanism by the following instance. Suppose that a new 
value needs to write a specific cell. When the clock rise-
triggers, data buffer obtains the value. Then, after propagation 
delay of the rise-edged gated clock, the cell becomes 
transparent and the value in it is refreshed. Finally, after the 
gated clock signal turns off, the state in the cell keeps stable. 
For reset configuration, since latch usually does not have a 
reset-relating port, we can still reset it with the aid of the data 
buffer and the appropriate gated clock signals. 

The result on reducing area is marvelous, especially I 
cache and D cache with more bits of tags and other flags like 
valid. I cache benefits from 38% reduction [Table I], D cache 
benefits from 40% reduction [Table II], and the entire MIPS 
benefits from 35.8% [Fig. 1 (b)]. However, there exists 
tradeoff such as lack of stability and less EDA tool support, 
making the post-synthesis simulation cycle very large (about 
6ns). In short, this method offer an alternative way to reach 
similar AT value but features in small area. 

B. Instruction Cache 

I cache stores machine codes of a series of process, 
transferred from assembly code with an assembler. When the 
program counter (PC) inputs an assigned address, I cache 
outputs the corresponding instruction code. Fig. 3 shows the 
interface of our I cache. When I cache identifies the address 
from proc_addr, it either directly gives out the data (to 
proc_rdata) or stalls MIPS (proc_stall) and then requires data 
from slow memory. We adopt the direct-mapping method (8 
blocks × 4 words). A block includes 4 words (total 128 bits), 
a valid bit and a tag (25 bits). Besides, we implement an 
additional memory data buffer (128 bits) to store the data from 
memory when mem_ready = 1. 



Fig. 1. Area metric without hazard handling. (a) Distribution of blocks. (b) 

Area reduction with latch-based memory. 

Fig. 2. Schematic of latch-based memory. 

To reduce area, we disable all write functionality. We 
reduce all writing-relating ports, such as proc_write, 
proc_wdata, and set mem_write and mem_wdata to constant 
zero in order to fit slow memory interface. Fig. 4 shows the 
schematic of the finite state machine (FSM) in I cache. When 
the read access hits, I cache directly gives out the data without 
stalling the system; otherwise, it jumps to READ and SAVE 
state to require data from memory and stalls the system 
concurrently. The separation of two states is to reduce the long 
path from memory to proc_rdata and to avoid compressing too 
much process in only half of a cycle as the slow memory 
passes data at negative edge. 

We further go through several structures. For the 
comparison and conclusion of our experiment, please refer to 
Table I. 

1) Two-State: There are only two states in I cache, IDLE 

and READ. The advantage is that the operation is the 

simplest and minimize the number of cycles. However, 

there is only half cycle to store data when the 

mem_ready triggers, making it a bottleneck and hard 

to reduce the simulation cycle time for post-synthesis 

simulation. 

 

Fig. 3. Instruction cache interface. 

Fig. 4. The finite state machine of instruction cache. 

Fig. 5. The finite state machine of instruction cache with pre-fetch 

mechanism. 

TABLE I.  COMPARISON METRICS OF INSTRUCTION CACHE 

 Period 

(ns) 

Cycle 

# 

Total time 

(ns) 

Area 

(μm2) 

AT value 

(μm2·s) 

Two-State 4.6 1997 9183.9 300940.5 2.76 

Two-way 4.3 1997 8584.95 302123.6 2.59 

Prefetch 4.8 1985 9525.6 315039.1 3.00 

Latch-cell 6.1 2107.5 12855.75 260462.6 3.35 

a. Testbench: hasHazard. 

 

2) Two-Way Set Associative: It is another common type 

of address mapping. To keep the same number of 

words, there are total 4 sets, each with 2 elements 

which stores its own valid, tag and 4 words. We apply 

least-recently used as the replacement policy. The 

post-synthesis simulation time is almost the same as 

using direct mapping, but there is larger area because 

of longer tags and the hardware of replacement. 

3) Pre-Fetch: Pre-fetching is an idea that we can load 

instructions from memory and handle continuous read 

access from MIPS simultaneously. The reason of pre-

fetching tends to be a good strategy to I cache since 

(a) (b) 

 

 

State Function: 

 

 IDLE: Keep on reading if 

  hit 

 READ: Read memory when 

  read miss 

 SAVE: Store data to cache 

 

 

State function: 

 

 IDLE: Keep on reading if hit 

 PRE: load data from memory 

  and handle requirement 

  from MIPS 

 READ: Handle read miss, access 

  memory 

 



Fig. 6. Data cache interface. 

Fig. 7. The finite state machine of data cache. 

TABLE II.  COMPARISION METRICS OF DATA CACHE 

 
Period 

(ns) 

Cycle 

# 

Total time 

(ns) 

Area 

(μm2) 

AT value 

(μm2·s) 

Three-State 4.4 2149 9453.4 296688.5 2.8 

Two-way 3.9 3992.5 15570.75 303602.1 4.73 

Latch-cell 6.1 2104.5 12837.45 254329.9 3.26 

a. Testbench: hasHazard. 

 

MIPS often requires instructions from cache in order, 

and the used instruction is seldom used after executed. 

As a result, keeping updating data in I cache may be a 

good way to reduce miss rate and stalling cycles. We 

use a preload control unit to handle this issue and only 

pre-load next 4 words only if the index of the block 

array is 0 now (the first word) to save much loading 

time, and no beq, j, jal commands appear in the current 

reading block to avoid wasted cycles. For the FSM, 

please refer to Fig. 5. However, due to area overhead, 

extra time cost for decision and actual existence of 

loop instructions, we do not adopt this structure at last. 

C. Data Cache 

D cache is used to store and load data, controlled by lw, sw 
command. As there is only a 32-word register file inside MIPS, 
in order not to exceed the storage, MIPS have to communicate 
with D cache. Fig. 6 shows the interface of our D cache. D 
cache needs to handle both read and write access, and is 
controlled by proc_read and proc_write. The reading process 
is similar to I Cache (Section II-B), so we put emphasis on 
write access. We also adopt the direct-mapping method (8 
blocks × 4 words) while there are additional 8 bits to indicate 

Fig. 8. Level 2 cache interface. 

Fig. 9. The finite state machine of level 2 cache. 

TABLE III.  COMPARISION METRICS OF LEVEL 2 CACHE 

Required Comparison Metrics 

Avg. mem. access timeb 

(cycles) 

Total exe. Time 

(ns) 

Post-syn sim. period 

(ns) 

1.0432 129857.24 4.09 

Detailed Post-Synthesis Simulation Result 

 
Period 

(ns) 

Cycle 

# 

Total time 

(ns) 

Area 

(μm2) 

AT value 

(μm2·s) 

Reg cell 4.09 31750 129857.24 925727.99 120 

Latch cellc 4.9 31672.5 155195.25 924699.4 144 

a. Testbench: L2Cache. 

b. Avg. mem. access time = HT1 + MR1×(HT2+MR2×MP2), 

HT1 = 1, MR1 = 4%, HT2 = 1, MR2 = 2%, MP2 = 4 

c.  Latch cells are used only in register file 

 

which block is dirty as we use write back as our writing  
strategy. Besides, memory data buffer (128 bits) also exists in 
D cache. 

Fig. 7 shows the schematic of the FSM in D cache. When 
the read or write access hits, D cache directly gives out or 
writes the data without stalling the system; otherwise, it stalls 
the processor, jumps to READ and SAVE state to require data 
from memory if the assigned block is miss and clean, and 
jumps to WRITE state if the assigned block is miss and dirty. 
The reason of separating READ and SAVE states is the same 
as accounted in I cache. 

We further go through several structures. For the 
comparison and conclusion of our experiment, please refer to 
Table II. In terms of two-way set associative structure, since 
the issue is the same as I cache, we omit the discussion. Thus, 
we only analyze the reduction of states. The minimal states 
can be only three in D cache, which include IDLE, READ and 

 

 

State function: 

 

 IDLE: Keep on read- 

  ing and writ- 

  ing if hit 

 READ: Read memory 

 SAVE: Store data to  

  cache 

 WRITE: Write memory 

 

 

 

State function: 

 

 IDLE: Keep on read- 

  ing and writ- 

  ing if hit 

 READ: Read memory 

 SAVE: Store data to  

  cache 

 WRITE: Write memory 

 



Fig. 10. Write configuration of the register file. 

WRITE. The advantage is the same as the case in I cache. 
However, the negative-edge-triggered mem_ready forces all 
the relating operations to finish in a half cycle, and as a result, 
dominates the bottleneck in post-synthesis simulation. 

D. Level 2 Cache 

Level 2 cache (L2 cache) acts as a memory to level 1 cache 
(L1 cache, including I cache and D cache), and acts as a cache 
to slow memory. The existence of L2 cache may shorten the 
access time for L1 cache, and thus reduce the miss penalty for 
L1 cache.  The interface of L2 cache is shown in Fig. 8. We 
only support L2 cache to D cache. In RTL code design, we 
use a wrapper to combine D cache and L2 cache, and make it 
act effectively as the original D cache. We adopt the direct-
mapping method (64 blocks × 4 words). A block includes 4 
words (total 128 bits), a valid bit, a dirty bit and a tag (22 bits). 
Besides, we implement an additional memory data buffer (128 
bits) to store the data from memory when mem_ready = 1. 

Fig. 9 shows the schematic of the FSM in L2 cache. Most 
of the design is similar to D cache except that when L2 cache 
finishes write back, the state transfers to READ if L1_read = 
1 while it transfers to IDLE if L1_write = 1 since the data from 
L1 cache are 128 bits. Another difference is that when we 
want to stall L1 cache, we pull down L1_ready to fit the 
original function of mem_ready in L1 cache. 

The comparison metrics required from the project and 
other detailed post-synthesis simulation results are shown in 
Table III. 

III. ARCHITECTURE OPTIMIZATION 

For a pipelined MIPS, there are total five stages, including 
instruction fetch (IF), instruction decode (ID), execution (EX), 
memory (MEM) and write back (WB). Fundamental large 
blocks such as I cache, register file (RF), arithmetic logic unit 
(ALU), D cache are located at the same stage as those in the 
textbook [1]. In this section, we introduce how we arrange the 
data paths and how we deal with hazards. 

A. Register File Write Access Modification 

In terms of writing data into RF, we have to consider the 
relating control signals such as RegDst, Jal, and RegWrite. 
For a typical design, the RegWrite signal enables the write 
access while the others determine the address. Thus, the 
address path includes these MUXes controlled by the two 
signals. To avoid propagating RegWrite from ID stage to WB 
stage, we handle these signals in the circuits as shown in Fig. 
10. The first MUX for RegDst still exists. For Jal and 
RegWrite signals, the address result is 31 (5'b11111) if both 

Fig. 11. Merging the branch address with the adder for the program counter. 

Jal and RegWrite are true, and is 0 (5'b00000) if RegWrite is 
false since $zero (number 0) is always a constant zero, 
implying that RF is not written. Thus, we use OR gate for Jal 
and AND gate for RegWrite instead of MUXes to reduce the 
area. 

B. Bubble Reduction and Data Propagation 

Directly storing the jump address into RF (jal and jalr) 
seems efficient, but requires a bubble to avoid conflict with 
WB stage. Instead, we propagate it to ALU, that is, we 
additionally implement a MUX for the first input of ALU. 
This condition occurs when the command is jal and jalr. Then, 
a meaningless operation, logical left shift by zero bits, 
executes in ALU. Thus, the value holds and correctly stores 
into RF after the data paths of the remaining stages. Moreover, 
for mfhi or mflo commands, we apply the same approach to 
pass the value from register Hi or Lo, respectively. 

As for beq, we handle it in ID stage. Conventionally, we 
use an adder in ID stage to calculate the branch address and 
pass the result to the MUX that chooses the next values of the 
program counter (PC) [1]. However, since there is also an 
adder in IF stage, we merge them so as to reduce area. Fig. 11 
shows the concept. Here BranchAddr denotes the branch-
extended immediate. In regular cases, BranchHit is false, and 
the result is sum of current PC address and 4. If BranchHit is 
true, owing to the mechanism of pipelining, the result should 
be the sum of current PC value and BranchAddr. Note that this 
optimization cannot be applied to branch prediction since 
without prediction, the difference between the PC value in the 
ID stage and that in the IF stage is always 4, when we sense 
beq in ID stage. 

C. Arithmetic Logic Unit Optimazation 

Based on the design, our ALU supports 10 functions 
except for multiplication and division, both of which belong 
to extension. Table IV lists the control codes and 
corresponding functions. We divide the functions into four 
classes (shift, logic, simple arithmetic, and multiplication/ 
division) via the most significant 2 bits. In terms of 
multiplication and division, please refer to Section IV-B. 

1) Shift: Shift type operations include sll, srl and sra. We 

expect that directly typing register-transfer level (RTL) 

codes may lead to large area (three shifters and a 

MUX), so we implement Funnel Shifter [3]. Initially, 

we need to generate a bus with 63 bits [Table V]. Then, 

we use a large MUX to obtain the final shifted value 

[Fig. 12]. Note that if we want to obtain a right-shifted 

output, the number of shifts (Y[10:6]) needs to change 

 
 



TABLE IV.  CONTROL CODES OF ALU 

ALUCtrl function Relating Instructions 

0000 
shift X left for Y[10:6] 

bits 

sll, jal, jalr, nop, mfhi, 

mflo 

0010 
arithmetic shift X right for 

Y[10:6] bits 
srl 

0011 
logical shift X right for 

Y[10:6] bits 
sra 

0100 X & Y and, andi 

0101 X | Y or, ori 

0110 X ^ Y xor, xori 

0111 ~(X | Y) nor 

1000 X+Y add, addi, lw, sw 

1001 X-Y sub 

1011 (X<Y)?1:0 slt, slti 

1100 multiplicationa mult 

1101 divisiona div 

default output 0  

a. For multiplication and division, the relating circuit is in new modules rather than the 

original ALU block. 

TABLE V.  BUS VALUE FOR FUNNEL SHIFTER 

Function Bus Value 

sll Bus = {X, 31'b0} 

srl Bus = {31'b0, X} 

sra Bus = {{31{X[31]}}, X} 

TABLE VI.  MUX OUTPUT OF BOOLEAN FUNCTION UNIT 

X[i] Y[i] and or xor nor 

0 0 0 0 0 1 

0 1 0 1 1 0 

1 0 0 1 1 0 

1 1 1 1 0 0 

 

2) to one's complement. For instance, if we want to shift 

left by 31 bits (5'b11111), we choose Bus[31:0] while 

if we want to shift right by 0 bits (5'b00000), we still 

choose Bus[31:0]. Note that 5'b00000 is the one's 

complement for 5'b11111. 

3) Logic: Logic type operations include and, or, xor, nor 

and so on. We expect that directly typing RTL codes 

may lead to large area overhead, so we implement 

Boolean Function Unit [3]. In the original case, we 

have to compute AND, OR, XOR, NOR first and 

choose the correct logic function with a MUX, while 

in our proposed case, two inputs directly control the 

MUX to choose the truth value we compute first via 

the least significant 2 bits of the control codes [Table 

VI]. We therefore reduce the area. 

4) Arithmetic: Arithmetic type operations include add, 

sub, slt and so on. We expect that directly typing RTL 

codes may lead to large area overhead (adder, 

subtractor and comparator), so we implement adder-

subtractor [3]. If the function is slt, the ALU executes 

subtraction and sense the compare flag. The practical 

implementation is shown in Fig. 13. 

 

 

 

Fig. 12. Output stage of Funnel Shifter. 

Fig. 13. Adder-subtractor. 

D. Hazard Handling 

There are several types of hazard as follows, all of which 
relate to the data refreshing of RF. In general, if the hazard 
happens in EX stage, we need to pipeline the hazard control. 
If the hazard happens in ID stage, we directly control it. 

1) Data Hazard: This may happen if we sense the write 

address of RF in EX stage is the same as the read 

address of RF in ID stage. Hence, we forward the 

pipelined data. More specifically, we link the data 

from different stages (original EX, MEM, WB, and 

pipelined WB) together to the two input ports of ALU 

with 4-to-1 MUXes. In terms of pipelined WB, we 

have to consider the case that we sense the hazard 

between ID stage and WB stage, and hence, we need 

to pipeline the data in WB stage. 

2) Jump Hazard: This may happen when we sense jr or 

jalr in ID stage. We also apply a MUX with the data 

input from original ID, EX, MEM and WB stages with 

the control signal named ForwardJump. 

3) Load Word Hazard: This may happen when the lw 

command executes in the EX stage and the command 

in ID stage needs the data from D cache. Hence, we 

need to generate a bubble in EX stage and stall the 

process in both IF and ID stage, and the hazard belongs 

to other types. 

4) Branch hazard: This may happen when we sense beq 

in ID stage. We directly forward the data to the 

comparator, which is similar to jump hazard. However, 

due to long critical path, we generate a bubble in EX 

stage when EX stage and ID stage access the same 

relating address of RF. In addition, if we sense lw in 

EX stage, we generate two bubbles in EX stage since 
 

 

 



Fig. 14. Finite impulse response filter with classifier. 

Fig. 15. (a) MAC and classifier. (b) Performance of different types of branch 

prediction architectures (based on the testbench for branch prediction). 

we expect that the path from D cache to PC through 

the branch comparator is long. 

IV. EXTENSION OPTIMIZATION 

There are three optional extensions in this project and we 
accomplish all. The following describes how we optimize 
these extensions. However, for L2 cache, please refer to 
Section II-D, and for mfhi and mflo commands, please refer 
to Section III-B. 

A. Branch Prediction  

After observing the branch result from all of the 
testbenches, we discover that simply implementing a 2-bit 
prediction unit does not effectively enhance the performance. 
As a result, we look for other implementations. Actually, if we 
record the branch result each time, we can construct a time 
signal, that is, we can exploit a finite impulse response (FIR) 
filter to generate the prediction [Fig. 14]. Whenever we obtain 
a new branch result in ID stage, we shift the delay registers. 
Then, when the MIPS sense the new branch command in the 
IF stage, we obtain the MAC and classifier result to determine 
the prediction. An exception happens if there are continuously 
two branch commands and the one in the ID stage predicts 
correctly. Since the delay registers does not shift yet, we need 
to choose the forward values. 

In terms of machine learning, we can regard branch 
prediction as a classification problem, so we implement the 
network as shown in Fig. 15 (a). The weights and the bias are 
trained in advance. However, to reduce complexity of the 
hardware, quantization is essential and we finally choose 4 
bits. We first compute the MAC result, and activate it with a 
step function, or in reality, by extracting the most significant 
bit. Since five of the inputs are only 1 bit, the multiplication 
is nothing but an AND function, which is a good news to 
MAC. Accumulation is also supposed to be simple due to 

Fig. 16. Finite state machine of the multiplier-divider. 

quantization. Fig. 15 (b) shows the result of our proposed 
implementation. Compared to original chip and the one with 
2-bit prediction, ours only outputs three errors, an obvious 
reduction. 

B. Multiplication and Division 

For simplicity, we propose a general FSM [Fig. 16] to 
control both the multiplier-divider and the original processor. 
When either multiplication or division commands (mult, div, 
respectively) occurs in the IDLE state, the state machine stalls 
the processor just like what caches do when they miss the data. 
The state then changes to MULT (or DIV). After the allocated 
cycles, the state becomes BUF and returns to IDLE in the next 
cycle. With some shift operations, we use 8 cycles to compute 
multiplication and 16 cycles to compute division, and the 
registers, Hi and Lo, store the temporary result. 

1) Multiplier: Fig. 17 shows the multiplier block. Since 

there are 8 cycles and the data is 32 bits wide, we take 

four product results (I, J, K, L) and shift-add them 

together in each cycle. Fig. 18 shows the top view. 

Note that the shift in the temporary is constant since 

we execute multiplication from the most significant 

bits. 

2) Divider: In the divider cell, we need to determine 

whether the difference is positive or not to select the 

correct remainder [Fig. 19]. This remainder is then 

sent to next stage iteratively to obtain the result of 

division. By similar mechanisim in multiplication, we 

build a divider block to calculate 2 iterations because 

we use 16 clock cycles here. 

 
Fig. 20 shows how we implement the two funcitons 

together. Both blocks share the same inputs and their 
temporary results propagate to register Hi and Lo. 

V. SYNTHESIS SETTING AND RESULT 

We use the required synopsys design constraints offered 
by the teaching assistance, and only modify the cycle for 
synthesis. The only constraint we add is that the tool supports 
ungroup -all -flatten except for L2 cache, which means that 
the generated gate level code is not classified to its original 
module. However, this constraint make it difficult for us to 
debug, so we only use t when we synthesize the final version 

 

(a) (b) 

 



Fig. 17. The multiplier block.  

Fig. 18. Top view of the multiplier.  

Fig. 19. The divider cell. 

Fig. 20. The overall multiplier-divider.  

of our design. For compile instruction, we use compile instead 
of compile_ultra, and does not give any other flag. The 

TABLE VII.  POST-SYNTHESIS SIMULATION RESULT 

 

.sdc 

cycle 

(ns) 

Sim. 

period 

(ns) 

Sim. 

time 

(ns) 

Area 

 

(μm2) 

AT 

value 

(μm2·s) 
hasHazard 3 2.93 6628.22 287086.35 1.90 

BrPred 3 2.83 1498.09 300207.25 0.450 

L2Cache 3 4.09 129857.24 925727.99 120 

Mult/Div 3 3.21 1073.87 320492.88 0.344 

 
synthesis results are shown in Table VII. 

VI. CONCLUSION 

  To design a MIPS is a hard task. Plotting the architecture 
is necessary before we practically type the RTL code. After 
gradually accomplishing each stage that we define in Section 
I, we harvest the satisfying result. The steps that we minimize 
the AT value follow the sensitivity and thus we first focus on 
shrinking the area of memory, then compressing the timing of 
cache, and finally, modifying local blocks and data paths. 
However, due to clock delay, exploiting latch-based memory 
may increase the simulation time. In addition, for 
multiplication and division, we reduce the latency from 32 
cycles to 8 and 16 cycles, respectively. Moreover, our MIPS 
is more than a normal MIPS since we combine various 
techniques, which we learn from different courses such as 
(advanced) integrated circuit design and machine learning, to 
this course. For instance, we achieve the prominent result of 
branch prediction via machine learning. If we consider the 
practical applications, we can store different weights and bias 
in memory to deal with different types of predictions, or even 
train the MIPS simultaneously when it executes, although it is 
out of the scope of the specification according to this project. 
According to our optimization techniques explained above, 
we expect our MIPS to be the comparable one among all of 
the groups. 

REFERENCES 

[1] D. Patterson and J. Hennessy, Computer organization and design, 5th 
ed. 2017. 

[2] "Static random-access memory", En.wikipedia.org, 2018. [Online]. 
Available: https://en.wikipedia.org/wiki/Static_random-
access_memory. 

[3] N. Weste and D. Harris, Integrated circuit design, 4th ed. 2011. 

 

 

 

 


