Group 14: Hung Cheng, Hsin-Yu Tsai, Chi-Jui Ho, Jing-Cheng Chang

Abstract

Goal 1/5/10 shot learning on Cifar-100

Dataset 80 base class: 500/100 for train/test

20 novel class: k-shot images/2000 for train/test Siamese Neural Network [1], Relation Network [2]

Approach

Approach

Siamese Neural Network

Traditional version

Feature extractor: 5 convolutional layers

Classifier:

Input: L1 distance of the 2 feature vector Output: 2 fully connected layer, sigmoid

Loss function: binary cross-entropy

Learn to tell whether 2 images are from same classes

Our version

Structure is similar to traditional version.

Alternatives: concatenate 2 feature vector, add CNN

layer to obtain new relation between 2

feature vector

A more effective way to evaluate the correlation.

Relation Network

Feature embedding : f_{ω}

Relation comparison module : g_{φ} Loss function : cross-entropy loss

Random sample 20 classes from 80 base classes, each pick k images to stimulate few shot learning.

The model will learn how to compare with 2 feature vector, fix a support set and pick k query image(s) to obtain relations between support set and decide which class has the highest relation score.

Experiment

Siamese Neural Network

Comparison accuracy between 1/5/10 shot training

	1-shot	5-shot	10-shot
accuracy	0.3555	0.5125	0.5415

 With/Without Sigmoid at feature extractor output 40 base classes

5-shot	with Sigmoid	without Sigmoid
accuracy	0.2980	0.3420

Accuracy progress along the augmentation of data pool

classes	20 classes	40 classes	60 classes	80 classes
accuracy	0.2740	0.3795	0.4330	0.4465

With/Without fine tune

5-shot	without fine tune	with fine tune
accuracy	0.4390	0.5125

Comparison between traditional method and ours

Accuracy	Traditional method	Our method
validation	0.8070	0.8210
test	0.4205	0.3900

Relation Network

 Comparison accuracy between 1/5/10 shot training number of query images equals to k

	1-shot	5-shot	10-shot
accuracy	0.2430	0.4455	_

Accuracy progress compare with validation
 50 validation episodes

	1-shot	5-shot	10-shot
validation	0.2760	0.4430	1
test	0.2430	0.4455	_

With/Without fine tune (with data augmentation)

5-shot	without fine tune	with fine tune
accuracy	0.4000	0.4455

Data augmentation (without fine tune)
 Random horizontal/vertical flip (p=0.1)

Random rotate angle < 15

5-shot	without augmentation	with augmentation
accuracy	0.4215	0.4455

Reference

- [1] Siamese Neural Networks for One-shot Image Recognition, Koch et al., ICML' 15 workshop
- [2] Learning to Compare: Relation Network for Few-Shot Learning, Sung et al., CVPR'18
- [3] Low-shot Visual Recognition by Shrinking and Hallucinating Features, Hariharan et al., ICCV'17