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ABSTRACT Accurate alignment of multi-session medical imaging is essential to the analysis of disease
progression. By comparing the magnetic resonance imaging (MRI) data captured before and after a course
of neoadjuvant chemoradiation (nCRT) treatment, physicians are able to evaluate the tumor response for
further treatment of the disease. However, rectal MRI data captured in multi-session are often misaligned
and not guaranteed to have one-to-one correspondence, making it challenging for physicians to observe
the treatment response of tumor. To address this issue, we propose an unsupervised learning based volume
registration framework, which enables accurate alignment even under a high degree of deformation between
multi-session rectal data. Moreover, it works without the assumption of one-to-one correspondence between
multi-session data, and hence is a general solution to rectal MRI volume registration. The experimental
results show that the proposed registration framework accurately aligns rectal cancer images and outperforms
other state-of-the-art methods in medical image registration. By providing accurate registration, it can
potentially increase the efficiency and reduce the workload for physicians to evaluate the rectal tumor
response to nCRT.

INDEX TERMS Magnetic resonance imaging, image registration, rectal cancer, deep learning, convolutional
neural network.

I. INTRODUCTION
Rectal cancer is one of the most common and life-threatening
cancers, especially for older people and people in develop-
ing countries. According to the statistics by World Health
Organization (WHO), about 732,210 new cases and 339,022
deaths were caused by rectal cancer around the world in
2020 [47]. The prognosis of rectal cancer is directly related
to tumor staging, and the treatment strategy is based on the
location and extent of the disease. For instance, transanal
endoscopic microsurgery and the extra levator abdominoper-
ineal resection are performed for patients whose rectal tumors
are in early and late stages, respectively [34]. According
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to the National Comprehensive Cancer Network (NCCN)
guidelines, neoadjuvant chemoradiotherapy (nCRT) is the
standard treatment for patients with locally advanced rectal
cancer before surgery [46]. Moreoer, it has been demon-
strated that nCRT and total mesorectal excision had resulted
in substantial improvement in local disease control for rectal
cancer [35], [36], [37].

It is necessary to restage the rectal tumor post-nCRT
before making surgical decisions [33], [46]. Specifically,
a ‘‘watch-and-wait’’ process is widely adopted to evaluate
tumor treatment response and decide whether the rectal is
preservable [34], [39], [40], [42]. Themainstay of staging and
restaging rectal tumors is magnetic resonance scanning of the
pelvis, which helps physicians accurately access tumor loca-
tion, tumor extent, invasion to nearby organs, and regional
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FIGURE 1. An illustration of three possible scanning directions of MRI
data in our dataset. The green, blue, and red rectangular in 3D view
represents the scanning in SI, LR, and AP directions, respectively. Example
images in these three directions are shown in the bottom row in order.
In our rectal data, only one of the three directions are captured in
full-resolution. For illustration purpose, we showed full-resolution
images for all three directions. Besides, all the images shown in this
figure are from session 1, which is pre-treatment.

lymph node metastasis. Nowadays, several methods for eval-
uating tumor response to treatment have been developed. The
most popular one is the Response Evaluation Criteria In Solid
Tumors (RECIST). Comparing with methods based on func-
tional or metabolic changes [43], [45], RECIST is easier to
perform because it is based on anatomical change. To support
RECIST in rectal cancer, an accurate alignment for volumes
pre and post-nCRT, called multi-session volumes, is needed.
Therefore, volume registration approaches, which estimates a
transformation function between multiple volumes, is a good
fit to support RECIST.

However, our rectal MRI data presents a challenging sit-
uation to volume registration. First of all, the ground truth
transformation functions among multi-session volumes are
unavailable, making supervised learning an infeasible way
to train a registration network. In addition, it is difficult to
set a fixed scanning position in the pelvic region in multi-
session, so we usually face a high degree of transformation.
It is also notable that the organs usually undergo uneven
changes over time, e.g., the bladder filling or weight change
after a period of nCRT, which takes about three months.
Therefore, it is hard to adopt one-to-one correspondence
between multi-session rectal data as an assumption, which
is made by many existing methods. Due to these limitations,
an unsupervised method without the assumption of one-to-
one correspondence is needed. An example of 3D rectal data
is shown in Fig. 1. We can see that a total of three differ-
ent scanning directions: superior-inferior (SI), left-right (LR),
and anterior-posterior (AP) are used for data collection.

To address these issues, we propose a rectal registra-
tion model trained by unsupervised learning. Specifically,

we perform data synthesis to provide pseudo paired data
for model training. The proposed model consists of four
components: feature extraction, feature description, affine
matrix estimation, and reweighed deformable registration.
The first component applies SuperPoint Network (SPN)
to detect key points from MRI volumes. Then, each key
point and its surrounding features are extracted by the fea-
ture descriptor, a ten-layer 3D convolutional neural net-
work (CNN). The affine matrix estimate is completed by
two-way-nearest-neighborhood (TWNN) and random sample
consensus (RANSAC), which matches the key points from
multi-session volumes according to corresponding descrip-
tions. The last component further aligns the boundaries but
preserves the structure of interior features of rectal. By lever-
aging these components, the proposed method provides accu-
rate alignment between fixed and moving data regardless of
a high degree of deformation between them.

Our contributions are highlighted as follows:
• We propose a 3D rectal registration approach that out-
performs state-of-the-art methods for this application.

• The proposed approach accurately aligns important fea-
tures such as Femur head and Internal obturator muscle
between multi-session rectal volumes.

• The proposed approach does not rely on ground truth
transformation function or one-to-one correspondence
between multi-session rectal volumes.

The remainder of the paper is organized as follows: Sec. II
reviews the existing approaches to medical image registra-
tion. The proposed method is described in detail in Sec. III.
The experimental results and possible extensions are pre-
sented in Sec. IV and Sec. V, respectively. Finally, we give
a conclusion in Sec. VI.

II. RELATED WORKS
There has been a substantial amount of research in the 3D
medical image registration problem, including both conven-
tional and deep learning approaches. Conventional rigid or
deformable registration methods usually iteratively optimize
parameters of transformation models according to a prede-
fined energy function that evaluates the similarity of source
and target imaging volumes [15], [16], [17], [22]. Specifi-
cally, rigid transformation is often used to register bones-like
features [22]. Reuter et al. proposed an algorithm itera-
tively computes the affine transformation matrix that pre-
serves inverse consistency [2]. It can be implemented by
FreeSurfer [1], a common software for MRI image process-
ing. Moreover, considering the deformable nature of most
tissues, many approaches adopt a deformable model to pur-
sue further improvements, including Maxwell’s or Diffeo-
morphic demons [15], [16], free form deformation (FFD)
b-splines [17], [18], and fluid flow model [19], [20]. Also,
mutual information [48] and kernel regression [49] based
methods have been applied to deformable medical image
registration.

Recently, deep learning methods have achieved signifi-
cant improvement in runtime without sacrificing registration
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performance [9], [24], [25], [26], [28], [29], [31]. Vos et al.
proposed a coarse-to-fine pipeline that cascades an affine esti-
mation network with B-spline estimation network based on
deep learning [24]. Although making registration 350 times
faster than conventional methods, the applicable resolution
is limited due to fully connected layers. Balakrishnan et al.
proposed VoxelMorph (VXM), a fully convolutional network
for deformable MRI image registration that is able to pro-
cess a variety of resolution [31]. It demonstrated comparable
accuracy to conventional methods while drastically decreased
the runtime to be less than a second [31]. However, the
method only works well on images pre-aligned by the algo-
rithm proposed by Reuter et al. [2]. Yang et al. proposed a
neural network called LapIRN that estimates the diffeomor-
phic maps instead of displacement field to preserve topology
and smoothness of deformation [29]. ProsRegNet (PRN) is
a deep learning based approach to coarse-to-fine registra-
tion between MRI and 2D histopathology prostate cancer
images [32]. However, PRN requires manual pre-processing
to crop and mask the region of interest for every input pair,
which significantly limits the applicability of the approach in
clinical practice. Among these methods, both PRN and VXM
claimed themselves the state-of-the-art approach for coarse-
to-fine medical image registration, while LapIRN claimed
that it is the state-of-the-art approach for deformable medical
image registration.

Unlike previous approaches, the proposed 3D image reg-
istration framework does not require any pre-processing
before estimating the correspondence between the paired
data. In addition, it does not require the presence of one-to-
one correspondence between paired data. With these proper-
ties, our proposed framework is a more general choice than
existing ones for 3D MRI volume registration.

III. PROPOSED APPROACH
In this section, we introduce every process of the proposed
pipeline in detail. An overview of our proposed pipeline is
illustrated in Fig. 2. It takes a pair of multi-session vol-
umes, also called fixed and moving volumes (Vf and Vm),
as input, andwarpsVm towardVf . It contains fourmain proce-
dures: key point detection, feature description, affine matrix
estimation, and reweighed deformable registration. They are
achieved by SPN, feature descriptor (FD), the combination
of TWNN and RANSAC 3D [3], and reweighed deformable
registration (R-VXM), in order. Specifically, as shown in
the figure, their outputs are key points {p1, . . . , pn} and
{q1, . . . , pm}, feature vectors {f1, . . . , fn} and {g1, . . . , gm},
corresponding pairs {(pi1, qj1, . . . , pik , qjk )}, the affinematrix
estimate Ã, and the final registration result Vo, which is the
warping result of Vm. We also describe how we synthesize
training data for unsupervised learning and how triplet learn-
ing is deployed for model training.

A. KEY POINT DETECTION
The first component of the pipeline is the key point detection,
which detects the position with rich information and extracts

TABLE 1. Network architecture of feature descriptor.

its corresponding features. We apply the SuperPoint Network
(SPN) [14] as a key point detector. SPN consists of three
components: VGG-style encoder [12], interest point decoder,
and descriptor decoder. Specifically, the VGG-style encoder
consists of 8 convolutional layers, followed by two parallel
decoders, both consist of 2 convolutional layers. The two
decoders generate a set of key point pi ∈ R3 and correspond-
ing feature vectors fpi ∈ R256, respectively. In particular, for
each slice V[k] ∈ Rw×h obtained from volume V ∈ Rw×h×d ,
we got key points Pk : {pk0, . . . , pka} = SPN (V[k]) at that
slice, where pki ∈ R3. Then, we merge all the Pk , 1 ≤ k ≤ d
to form the set of key point {p1, . . . , pn} distributed over the
volume V . Mathematically speaking,

P = {pi|pi ∈ Pk , 1 ≤ k ≤ d} (1)

B. FEATURE DESCRIPTION
Since most of existing feature description approaches accom-
panied by the key point detection are developed for 2D data,
we develop our own 3D feature description approaches (FD).
For every key point pi detected by the SPN, we crop a sur-
rounding volume v(pi) ∈ R48×48×16 to be the input of FD.
Specifically, the feature descriptor network is a 10-layer 3D
convolutional network where every convolutional layer is fol-
lowed by 3D batch normalization [13] and a scaled expo-
nential linear unit (SELU) [8]. In the last layer, we apply
normalization and flatten the output to be a feature vector
fid = FD(v(pi)) ∈ R1024 as a descriptor of the corresponding
key point. The detailed architecture of the feature descriptor
is shown in Table 1. In addition, to incorporate complete 2D
information, we concatenate fid with feature vector fpi ∈ R256

extracted along with pi by SPN, mentioned in Sec. III. A.
Therefore, we obtain a 1280 dimensional feature vector for
each key point.

C. AFFINE MATRIX ESTIMATION
Affine matrix estimation is completed in two steps: TWNN
and RANSAC 3D. Denote the feature vectors of key points
from fixed and moving images, obtained by FD, as fixed
and moving vectors, respectively. The two groups of vectors
are matched by TWNN as follows. For each moving feature
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FIGURE 2. An overview of our proposed pipeline. Vf and Vm are the input multi-session volumes, called fixed and moving volumes, respectively. SPN,
FD, and TWNN denote Superpoint network, feature descriptor, and two-way-nearest-neighborhood, respectively. The outputs of these three
components are key points {pi } and {qi }, feature vectors {fi } and {gi }, and corresponding pairs {pik , qjk }. Ã is the affine matrix generated by RANSAC
3D, and R-VXM denotes reweighed deformable registration completed by voxelmorph. Vr nad Vo are preliminary and final registration results of the
pipeline, respectively.

FIGURE 3. An example of key points detected from a slice of rectal
volume scanned in LR direction. Key points are marked in cyan circles.

vector, we find a fixed vector that is the closest to it, called
its nearest neighbor. Specifically, we use cosine distance
d(u, v) = 1 − uT v to measure the distance between feature
vectors u and v. If a moving and fixed feature are the nearest
neighbor of each other, we call them amatching pair. Accord-
ingly, a set of k matching pairs {(pi1, q j1), . . . , (pik, q jk)}
is generated, where pi and q j are 3-dimensional vector con-
sisting of coordinate pi = (xi , yi , zi ) and q j = (v j , u j , w j )
from fixed and moving volumes, respectively.

RANSAC 3D is an iterative process that computes the
affine matrix that represents the transformation between
matching pairs. In each iteration t , it randomly picks six
matching pairs and applies the six-point-algorithm [5] to
compute a 4 × 4 affine matrix At that best describes the
transformation of these eight pairs. Then, we measure the
distance between p′i and ATt q

′
i for all 1 ≤ i ≤ n, where

p′i = [pi, 1] and q′i = [qi, 1]. If p′i satisfies ||p
′
i−A

T
t q
′
i||2 ≤ d ,

where d = 5 is the tolerant distance, it is counted as an

FIGURE 4. A configuration of triplet learning performed in this paper. The
red point denotes the baseline anchor from the fixed volume, while red
and blue points denote positive and negative anchors from the pseudo
moving volume. FD denotes feature descriptor, and uai , upi , and uni
denote the feature extracted by baseline, positive, and negative anchor,
respectively. L(uai , upi , uni ) is the loss function that guides the learning
process.

inlier of matrixAt . RANSAC 3D terminates when the number
of inliers is beyond a threshold, or a maximum iteration is
reached. When it terminates, the matrix At that allows the
most inliers becomes the output of RANSAC 3D, which is
denoted as Ã in Fig 2. In other words, the affine transfor-
mation matrix Ã represents the rigid transformation estimate
between fixed and moving volumes.

D. REWEIGHED DEFORMABLE REGISTRATION
It is notable that the transformations of rectal boundaries
are too complex to be characterized by an affine matrix.
Hence, deformable registration is needed to fine-tune the
results from rigid registration. However, we note that if they
are direct combined, undesirable artifacts are easily resulted
because of the lack of one-to-one correspondence between
fixed and moving data. Furthermore, when unexpected
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FIGURE 5. An example of manual feature labeling of data in three
different scanning directions. Subfigure (d), (e), and (f) depict features
labeled from (a), (b), and (c), respectively.

FIGURE 6. Examples of (a) raw image, (b) segmentation map, and
(c) reweighing mask for deformable registration.

distortions occur on the interior features, a performance
degradation will be caused. Therefore, when deformable reg-
istration is applied to align the boundaries, the preservation
of interior features should be carefully considered.

To address this issue, we apply a reweighed deformable
registration to rewarp Vr , the preliminary registration results
from Ã. The mask to reweigh the flow field generated by
VXM is computed as follows: We first obtain a segmenta-
tion map that identifying Femur head and Internal obturator
muscle, an interior feature of rectal data. Then, a mask is
generated according to the distance from each pixel to the
center of labeled features. The closer a pixel is to the center of
features, the lower value is assigned on the mask. An example
of segmentation map and its corresponding mask is shown in
Fig. 6. Specifically, the mathematical form of mask MV ,k of
slice V[k] is

MV ,k = max(1, (d0 + d1)/s), (2)

where d0 and d1 are the distance to the two bones, and s is an
hyper-parameter for scaling. Note that we only consider d0 in
LR scanning because at least one of the circle bones appear
in slices scanned in that direction.

As observed, by restricting the impact of flow field on inte-
rior features, we can fine-tune the structure without causing
serious distortion. It is notable that the flow field at bound-
aries is preserved, so it has enough intensity to drive the align-
ment at boundaries. In addition, when running reweighed

VXM, we concatenate Vr and the fixed volume Vf as input.
Then, the output flow field is multiplied by the mask and
guides the deformable registration to finalize the whole reg-
istration process.

E. DATA SYNTHESIS
Recall that a challenge to conduct learning-based registra-
tion approaches is the lack of one-to-one correspondence and
ground truth transformation function. To address the limi-
tation, we simulate an affine matrix T to generate pseudo
paired data for 10 MRI volumes, covering all three scanning
directions. A total of three different types of transformations
are considered in the simulation: translation, rotation, and
resizing, whose degrees are within [−50, 50], [−30◦, 30◦],
and [0.8, 1.2], respectively, in all three dimensions. By con-
sidering these three types of deformations, we are able to
generate pseudo paired data with diverse transformations ran-
domly. When pseudo paired data with labeled transforma-
tion T become available, model training is achievable.

F. MODEL TRAINING
We use synthesized paired data described in Sec. III-E to train
the feature descriptor network. In particular, triplet learn-
ing [11] is employed to train the feature descriptor network.
Fig. 4 depicts the scheme of triplet learning discussed in
this paper. For synthesized paired data, the transformation
matrix T between fixed and pseudo moving data is known as
prior. Hence, for a key points ai from fixed volume (called
baseline anchor), we pick a positive anchor pi satisfying
||a′i − Tp

′
i||2 ≤ τ , where τ = 5 is a hyperparameter denoting

tolerant distance. We also pick a negative anchor ni that does
not satisfy this condition.

In the training phase, we first randomly sample baseline
anchors and their associated positive and negative anchors.
For each anchor at the center, we crop a volume with size
(48 × 48 × 16) around it. After feeding the volumes to the
feature descriptor, corresponding feature vectors uai , upi , uni
are obtained. The loss function L(uai , upi , uni ) is defined as
follows:

L(uai , upi , uni ) = max(d(uai , upi )− d(uai , uni )+ m, 0), (3)

where d(u, v) = 1 − uT v measures the cosine distance
between u and v and m = 1 is the margin. Through the
loss function, it is encouraged to have uai , upi close to each
other, while uai , uni far away from each other. In other words,
it encourages features extracted from an anchor to be close
to its positive anchor, but be far away from the negative one.
The Adam optimizer [10] is applied to guide the optimization
process and the batch size is set as 128.

IV. EXPERIMENTS
In this section, we describe how the experiments are con-
ducted to compare the registration performance of the pro-
posed pipeline with four existing frameworks: FreeSurfer
(FS) [1], VoxelMorph (VXM) [31], ProsRegNet (PRN) [32],
and LapIRN [29]. Specifically, we took pre-trained model for
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all learning-based baseline methods. Note that before per-
forming VXM, we pre-align images using FS as suggested
by the literature. We also perform ablation test by only using
the rigid registration part of the proposed pipeline, denoted
as Ablated. The registration performance is evaluated in both
objective and subjective metrics.

A. EVALUATION METRICS
In subjective tests, we use chessboard images, which alter-
natively show the patches from fixed and moving images,
to evaluate the continuity between fixed and registered
image [9]. We also manually label binary feature maps of
Femur head and Internal obturator muscle, whose shape and
size are invariant over treatment, from MRI data. The shape
of these features are two balls in 3D views. In AP and SI
scanning, two circles are shown in slices of similar or nearby
locations. In LR scanning, one of the circle is shown in the
first few slices and the other one is in the last few slices.
Examples of labeled features of MRI data in different scan-
ning directions are shown in Fig. 5.
Then, we compute the Dice score, a metric widely used

in image registration [4], [29], [31], to perform objective
evaluation. It computes the overlapped region between binary
feature maps binary maps I1 and I2 by

Dice(I1, I2) =
26(I1 ◦ I2)
6I1 +6I2

. (4)

B. MRI DATA COLLECTION AND PREPROCESSING
Using an institutional review board approved protocol,
we retrospectively reviewed data on patients with rectal can-
cer whowere treated with nCRT from February 2017 to Octo-
ber 2020 at the 108 Military Central Hospital, Vietnam. Data
from 16 patients were identified for this study. All patients
underwent MRI scans for the rectum and pelvic regions using
aDiscoveryMR750w 3.0 Tesla GEM scanner.With the setup,
tumor status in different sessions can be easily accessed to all
the three scanning directions.

The size of a 3D rectal MRI data is (512, 512, d), where d
is the depth that varies over samples. Specifically, d ranges
from 70 to 160 in our rectal data. In each volume, only one
of the three scanning directions shown in Fig. 1 is captured
in full resolution, 512 × 512, while other two directions
are captured in lower resolution, 512 × d . For each patient,
we scanned rectal data before and after nCRT, obtaining fixed
and moving volumes, respectively. It is notable that the depth
ranges of fixed and moving volumes may be inconsistent. For
data partition, we use ten paired MRI data to train our feature
descriptor, and 24 paired data for testing, 8 for each scanning
direction.

C. QUANTITATIVE RESULTS
Table 2 shows the resulted Dice score of feature maps under
different registration approaches. We note that the proposed
method yields the highest Dice score among all competitors
in all directions. The superiority of our proposed method is

further demonstrated in Fig. 7. As observed, even the features
of paired data are at a distance from each other before regis-
tration, the proposed method is still able to provide accurate
alignment, which is not the case for other methods. Compared
with other methods, the proposed method yields a higher
overlapped feature maps after registration. The analysis about
the inferior performance caused by the competitors is dis-
cussed in Sec. IV-E.

D. QUALITATIVE RESULTS
The chessboard-like images for different registration
approaches are shown in Fig. 8. As observed, the proposed
algorithm yields the most accurate alignment over the entire
image. The boundaries of most patches are continuous,
including the rectal surface and its interior circular bone.
Furthermore, when comparing the results from the full and
ablated version of proposed pipeline, it is observed that
the continuities at boundaries are enhanced after reweighed
deformable registration is applied. Therefore, although only
slight improvement on Dice score is resulted by applying
reweighed deformable registration, the contribution to the
alignment over boundaries is unignorable. One may note
that the results from VXM also show high continuities over
images. Nonetheless, VXM is still inferior to our proposed
method due to its fragility to paired data with inconsistent
depth. More analysis is described in Sec. IV-E.
We also present chessboard images along other axis to ver-

ify the 3D integrity of registration results. Fig. 9 demonstrates
that the proposed method is able to register MRI data scanned
in all three directions accurately. In other words, an accurate
alignment is achieved no matter which dimension that the
volume is projected in. The results verify the robustness of our
registration method to deformations in all three dimensions.

E. DISCUSSION
Among all the competitors to our proposed method, we first
observe that FS yieldsmoderate Dice score. However, we also
note that it usually fails to provide accurate registration when
the depths of source and moving data differ significantly,
while our proposed algorithm is robust to such inconsistency.
A typical example is shown in Fig. 10, where the depths
of fixed and moving volumes are 92 and 124, respectively.
In this case, our method is robust to the inconsistent depth and
provides accurate alignment after rigid registration. Nonethe-
less, FS fails to recover the transformation between paired
data and results in a serious mismatching. Therefore, Femur
head and Internal obturator muscle of fixed and warped vol-
umes are not aligned under FS, causing a low Dice score. It is
notable that inconsistent depth is unavoidable in rectal data
collection, and our proposed method is a better choice than
FS due to its robustness to this issue.

We also notice that VXM achieves higher Dice score than
FS because it fine-tunes the output generated by FS. However,
when encountering a serious mismatching due to inconsistent
depth, such as the case in Fig. 10, VXM is not able to recover
the mismatching. Recall that VXM only works well when
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FIGURE 7. Examples of overlapped segmentation maps that demonstrate the registration results done by different registration methods. The red and
green feature maps are from slices of fixed and moving volume, respectively, and the yellow maps represent the overlapped region between the maps
from two slices. A higher overlapping region is better. The combination of method and direction is written as method-direction’’ (i.e., VXM-SI denotes
VoxelMorph in SI direction).

TABLE 2. Dice score of feature-based binary map with different registration approaches.

the rigid registration is accurate. Moreover, a serious perfor-
mance degradation will be encountered if FS is not applied to
pre-align the paired volume before performing VXM. Three
examples of registration results by directly applying VXM
without FS are shown in Fig. 11. As observed, undesirable
artifacts are easily generated over the rectal volume if FS is
not applied before VXM.

Among all the competitors, PRN has the worst perfor-
mance. Although it took MRI data from prostate, which is
closer than brain images to our rectal data, for model training,
it provides inaccurate alignment in almost all paired data. The
inferior performance was mainly due to three reasons. First,
PRN is designed for 2D registration, assuming no offset in the
vertical direction, which is not the case in our dataset. Second,
PRN assumes multi-modality registration, taking histology
and MRI data as input to estimate the correspondence. How-
ever, both fixed and moving images in our dataset are in the
same modality. Third, the input data for PRN are manually
pre-processed, while we work on raw images. Consequently,

PRN is not suitable to register rectal volumes in our dataset
and the poor Dice scores are resulted.

LapIRN achieves the best performance among deformable
approaches. It is able to recover overall transformation
between fixed and moving volumes, when the degree is mod-
erate. However, it usually fails to preserve the integrity of
interior features, such as examples shown in Fig. 7, when
warping themoving volume toward the fixed one. As LapIRN
is a deformable approach, whose transformation function is
with few restrictions, it easily overly transforms the moving
volume and causes artifacts like examples shown in Fig. 11.
Moreover, it usually incorrectly deforms the tumor of mov-
ing images, which is misleading when RECIST is conducted
according to the registration results. As presented in Sec. II,
all the competitor approaches are state-of-the-art approaches
for deformable or coarse-to-fine registration. Based on the
qualitative and quantitative comparison, our proposed unsu-
pervised approach outperforms these approaches and is a bet-
ter choice for rectal data registration.
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FIGURE 8. Examples of chessboard images that demonstrate the registration results for different methods. Yellow and cyan patches are from slice of
fixed and moving volume, respectively. Similar to Fig. 7, the combination of method and direction is written in ‘‘method-direction’’.

FIGURE 9. Chessboard images in (a) (b) AP and (c) (d) LR projection of a
rectal data whose full-resolution slices are scanned in SI direction. Yellow
and cyan patches are from slice of fixed and moving volume, respectively.

When comparing chessboard images generated by full and
ablated version of the proposed method, we observe that
introducing reweighed deformable registration as fine-tuning
greatly improves alignment at rectal surfaces and brings the

FIGURE 10. An example of registration results from FS (c) and the
proposed algorithm (d) when the depths of fixed (a) and moving (b) data
are inconsistent. Depths of fixed and moving data are 92 and 124,
respectively.

paired data even close to each other without causing arti-
facts. This is because rigid transformation focuses on transla-
tion, scaling, and rotation, while deformable transformation
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FIGURE 11. Examples of artifacts in all three scanning directions
generated by directly applying VXM after rigid registration.

FIGURE 12. An example of paired data with color mismatching, where
(a) and (b) are slice from fixed and moving volume, respectively.

has more flexibility to characterize the change of thickness
and shape of outermost layer of rectal. However, due to the
lack of one-to-one correspondence, changing the structure of
rectal surfaces is sometime risky. For example, the surface
may become thicker after nCRT due to normal growth, but
a deformable registration approach may yield a thickness
reduction to reach alignment, which may wipe out infor-
mation in moving data. Thus, the integration of rigid and
deformable registration should be carefully conducted in the
applications where surfaces over time is important for clinical
analysis.

Furthermore, it is notable that the superior performance is
achieved by using only ten pairs of rectal volumes as training
data. In other words, it is an economical choice in model
development. As opposed to the amount of training data
used in previous approaches [29], [31], [32], the proposed
method takes much less data for model training, and hence
has less computational burden in model training. Moreover,
as accurate registration results is provided with acceptable
computational cost, physicians are able to efficiently evaluate
the stage propagation of rectal cancer and make decisions
accordingly, making it a practical tool for clinical analysis.
Therefore, we believe the proposed pipeline has high poten-
tial in supporting RECIST to evaluate the effect of treatment.

V. POSSIBLE EXTENSIONS
In this section, we describe possible extensions to our reg-
istration approach, with a focus on paired data with color
mismatching or different modalities.

It is still an open problem to register rectal data across
multi-modality. Because the settings for image collection

usually change overtime, color of data in multi-session may
mismatch, as the example shown in Fig. 12. As observed,
except for the background, the range of voxel intensities of
slices from fixed and moving volume differs a lot. When the
colors of the two images are mismatched, feature description
usually becomes erroneous and affects the accuracy of the
affine matrix estimate. A possible solution is applying vol-
ume transformation before feeding mismatched paired data
to the proposed pipeline. Specifically, an option is to adopt
style transfer network, which has been successfully applied to
retina image registration [4], to bring the paired data into the
samemodality. Once the transformationworks well, the prob-
lem can be reduced to that discussed in this paper. Therefore,
we believe the collaboration between style transfer network
and our method can broaden the range of applications of
image registration.

Multi-modality also happens when T1w and T2w are
both deployed in data collection. The former with contrast
enhanced, and the latter has various resolutions to easily
access the tumor stage. In this paper, we focus on registering
T1w volumes in multi-session, while making the registration
of T2w scanning an open problem. Specifically, it is challeng-
ing to our proposed method due to two reasons. First, because
the field of view in T2w scanning is much smaller than that of
T1w, a higher degree of distortion is observed in data scanned
in T2w. Moreover, T2w scanning captures smaller areas than
T1w does, so fewer key points are detected, and the clues for
image registration may be insufficient. Therefore, we leave
it as a future work to capture sufficient features even in T2w
rectal data and enhance the robustness to different field of
views. Hopefully, multi-modality registration for rectal data
could reveal more information of rectal cancer for clinical
analysis.

VI. CONCLUSION
Rectal cancer has long raised attention in medical science due
to its high mortality, and its staging is essential to diagno-
sis. When images in multiple sessions are well-aligned, the
propagation of the tumor and the efficacy of nCRT treatment
can be easily observed. In this paper, we present a registra-
tion model that leverages data synthesis, feature detection,
description, and matching, and reweighed deformable reg-
istration. It achieves accurate image registration without the
need for ground-truth labeling or one-to-one correspondence,
making itself a general approach to rectal MRI volume regis-
tration. Moreover, in terms of Dice score of Femur head and
Internal obturator muscle, the proposed model outperforms
existing registration methods by achieving 0.806, 0.737, and
0.816 in SI, AP, and LR scanning direction, respectively. Its
importance to clinical analysis is demonstrated through the
high continuity shown in chessboard images and its potential
value to increase the efficiency of RECIST evaluation.

ACKNOWLEDGMENT
The authors would like to thank 108Military Central Hospital
for collecting and annotating rectal data.

87658 VOLUME 10, 2022



C.-J. Ho et al.: Unsupervised Learning Approach to 3D Rectal MRI Volume Registration

REFERENCES
[1] B. Fischl, ‘‘Freesurfer,’’ NeuroImage, vol. 62, no. 2, pp. 774–781,

Aug. 2012.
[2] M. Reuter, H. D. Rosas, and B. Fischl, ‘‘Highly accurate inverse con-

sistent registration: A robust approach,’’ NeuroImage, vol. 53, no. 4,
pp. 1181–1196, Dec. 2010.

[3] M. Fischler and R. Bolles, ‘‘Randomphsample consensus: A paradigm-
phfor model fitting with applications to image analysis and automated
cartography,’’ Commun. ACM, vol. 24, pp. 381–395, Jan. 1981.

[4] J. Zhang, C. An, J. Dai, M. Amador, D.-U. Bartsch, S. Borooah,
W. R. Freeman, and T. Q. Nguyen, ‘‘Joint vessel segmentation and
deformable registration on multi-modal retinal images based on style
transfer,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2019,
pp. 839–843.

[5] A. Torii, Z. Kukelova, M. Bujnak, and T. Pajdla, ‘‘The six point algorithm-
phrevisited,’’ in Proc. Asian Conf. Comput. Vis., 2010, pp. 184–193.

[6] Society, A. Key Statistics for Rrostate Cancer. Accessed: Jan. 12. 2022.
[Online]. Available: https://www.cancer.org/cancer/prostate-cancer/about/
key-statistics.html

[7] W. Bi, A. Hosny, M. Schabath, M. Giger, N. Birkbak, A. Mehrtash,
T. Allison, O. Arnaout, C. Abbosh, and I. Dunn, ‘‘Artificial intelligence
in cancer imaging: Clinical challenges and applications,’’ CA, A Cancer J.
Clinicians, vol. 69, pp. 127–157, Jan. 2019.

[8] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, ‘‘Self-
normalizing neural networks,’’ inProc. Int. Conf. Neural Inf. Process. Syst.,
2017, pp. 972–981.

[9] Y. Wang, J. Zhang, M. Cavichini, D.-U.-G. Bartsch, W. R. Freeman,
T. Q. Nguyen, and C. An, ‘‘Study on correlation between subjective and
objective metrics for multimodal retinal image registration,’’ IEEE Access,
vol. 8, pp. 190897–190905, 2020.

[10] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
2014, arXiv:1412.6980.

[11] E. E. Hoffer and N. Ailon, ‘‘Deep metric learning using triplet network,’’
in Proc. Int. Workshop Similarity Pattern Recognit., 2015, pp. 84–92.

[12] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556.

[13] S. S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,’’ in Proc. Int. Conf.
Mach. Learn., 2015, pp. 448–456.

[14] D. DeTone, T. Malisiewicz, and A. Rabinovich, ‘‘SuperPoint: Self-
supervised interest point detection and description,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2018,
pp. 224–236.

[15] J.-P. Thirion, ‘‘Image matching as a diffusion process: An analogy with
Maxwell’s demons,’’ Med. Image Anal., vol. 2, no. 3, pp. 243–260,
Sep. 1998.

[16] T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, ‘‘Diffeomor-
phic demons: Efficient non-parametric image registration,’’ NeuroImage,
vol. 45, no. 1, pp. S61–S72, Mar. 2009.

[17] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and
D. J. Hawkes, ‘‘Nonrigid registration using free-form deformations: Appli-
cation to breast MR images,’’ IEEE Trans. Med. Imag., vol. 18, no. 8,
pp. 712–721, Sep. 1999.

[18] D. Rueckert, P. Aljabar, R. Heckemann, J. Hajnal, and A. Hammers, ‘‘Dif-
feomorphic registration using B-splines,’’ in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent., 2006, pp. 702–709.

[19] G. E. Christensen, R. D. Rabbitt, andM. I.Miller, ‘‘3D brainmapping using
a deformable neuroanatomy,’’Phys.Med. Biol., vol. 39, no. 3, pp. 609–618,
Mar. 1994.

[20] E. D’Agostino, F.Maes, D. Vandermeulen, and P. Suetens, ‘‘A viscous fluid
model for multimodal non-rigid image registration using mutual informa-
tion,’’Med. Image Anal., vol. 7, no. 4, pp. 565–575, Dec. 2003.

[21] Y. Ou, A. Sotiras, N. Paragios, and C. Davatzikos, ‘‘DRAMMS:
Deformable registration via attribute matching and mutual-saliency
weighting,’’Med. Image Anal., vol. 15, no. 4, pp. 622–639, Aug. 2011.

[22] H. Livyatan, Z. Yaniv, and L. Joskowicz, ‘‘Gradient-based 2-D/3-D rigid
registration of fluoroscopic X-ray to CT,’’ IEEE Trans. Med. Imag., vol. 22,
no. 11, pp. 1395–1406, Nov. 2003.

[23] B. Vos, F. Berendsen, M. Viergever, M. Staring, and I. Isgum, ‘‘End-to-end
unsupervised deformable image registration with a convolutional neural
network,’’ in Deep Learning in Medical Image Analysis and Multimodal
Learning for Clinical Decision Support. Cham, Switzerland: Springer,
2017, pp. 204–212.

[24] B. D. de Vos, F. F. Berendsen, M. A. Viergever, H. Sokooti, M. Staring,
and I. Išgum, ‘‘A deep learning framework for unsupervised affine and
deformable image registration,’’ Med. Image Anal., vol. 52, pp. 128–143,
Feb. 2019.

[25] G Wu, M Kim, Q Wang, Y Gao, S Liao, and D. Shen, ‘‘Unsupervised
deep feature learning for deformable registration of MR brain images,’’
in Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent., 2013,
pp. 649–656.

[26] M. Simonovsky, B. Gutiérrez-Becker, D. Mateus, N. Navab, and
N. Komodakis, ‘‘A deep metric for multimodal registration,’’ in Proc. Int.
Conf. Med. Image Comput. Comput.-Assist. Intervent., 2016, pp. 10–18.

[27] W. P. Risk, G. S. Kino, and H. J. Shaw, ‘‘Fiber-optic frequency shifter using
a surface acoustic wave incident at an oblique angle,’’ Opt. Lett., vol. 11,
no. 2, pp. 115–117, Feb. 1986.

[28] X. Yang, R. Kwitt, M. Styner, and M. Niethammer, ‘‘Quicksilver: Fast
predictive image registration—A deep learning approach,’’ NeuroImage,
vol. 158, pp. 378–396, 2017.

[29] T. Mok and A. Chung, ‘‘Large deformation diffeomorphic image registra-
tion with Laplacian pyramid networks,’’ in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent., 2020, pp. 211–221.

[30] X. Cheng, L. Zhang, and Y. Zheng, ‘‘Deep similarity learning for multi-
modal medical images,’’ Comput. Methods Biomech. Biomed. Eng., Imag.
Vis., vol. 6, no. 3, pp. 248–252, May 2018.

[31] G. Balakrishnan, A. Zhao, M. R. Sabuncu, J. Guttag, and A. V. Dalca,
‘‘VoxelMorph: A learning framework for deformable medical image
registration,’’ IEEE Trans. Med. Imag., vol. 38, no. 8, pp. 1788–1800,
Aug. 2019.

[32] W. Shao, L. Banh, C. A. Kunder, R. E. Fan, S. J. C. Soerensen, J. B. Wang,
N. C. Teslovich, N. Madhuripan, A. Jawahar, P. Ghanouni, J. D. Brooks,
G. A. Sonn, and M. Rusu, ‘‘ProsRegNet: A deep learning framework
for registration of MRI and histopathology images of the prostate,’’ Med.
Image Anal., vol. 68, Feb. 2021, Art. no. 101919.

[33] American Cancer Society. About Colorectal Cancer.
Accessed: Sep. 22, 2021. [Online]. Available: https://www.cancer.
org/content/dam/CRC/PDF/Public/8604.00.pdf

[34] N. Horvat, C. C. T. Rocha, B. C. Oliveira, I. Petkovska, and M. J. Gollub,
‘‘MRI of rectal cancer: Tumor staging, imaging techniques, and manage-
ment,’’ RadioGraphics, vol. 39, no. 2, pp. 367–387, Mar. 2019.

[35] R. Sauer, H. Becker, W. Hohenberger, C. Rödel, C. Wittekind, R. Fietkau,
P. Martus, J. Tschmelitsch, E. Hager, C. F. Hess, and J. H. Karstens, ‘‘Pre-
operative versus postoperative chemoradiotherapy for rectal cancer,’’ New
England J. Med., vol. 351, pp. 1731–1740, Oct. 2004.

[36] J. E. Krook, C. G. Moertel, L. L. Gunderson, H. S. Wieand, R. T. Collins,
R. W. Beart, T. P. Kubista, M. A. Poon, W. C. Meyers, J. A. Mailliard,
D. I. Twito, R. F. Morton, M. H. Veeder, T. E. Witzig, S. Cha, and
S. C. Vidyarthi, ‘‘Effective surgical adjuvant therapy for high-risk rec-
tal carcinoma,’’ New England J. Med., vol. 324, no. 11, pp. 709–715,
Mar. 1991.

[37] R. J. Heald and R. D. H. Ryall, ‘‘Recurrence and survival after total
mesorectal excision for rectal cancer,’’ Lancet, vol. 327, no. 8496,
pp. 1479–1482, Jun. 1986.

[38] S. Rosati, C. M. Gianfreda, G. Balestra, V. Giannini, S. Mazzetti, and
D. Regge, ‘‘Radiomics to predict response to neoadjuvant chemotherapy
in rectal cancer: Influence of simultaneous feature selection and classifier
optimization,’’ in Proc. IEEE Life Sci. Conf. (LSC), Oct. 2018, pp. 65–68.

[39] G. Simpson, P. Hopley, J. Wilson, N. Day, A. Haworth, A. Montazeri,
D. Smith, L. Titu, J. Anderson, D. Agbamu, and C. Walsh, ‘‘Long-term
outcomes of real world ‘watch and wait’ data for rectal cancer after
neoadjuvant chemoradiotherapy,’’ Colorectal Disease, vol. 22, no. 11,
pp. 1568–1576, Nov. 2020.

[40] R. Cianci, G. Cristel, A. Agostini, R. Ambrosini, L. Calistri, G. Petralia,
and S. Colagrande, ‘‘MRI for rectal cancer primary staging and restaging
after neoadjuvant chemoradiation therapy: How to do it during daily clin-
ical practice,’’ Eur. J. Radiol., vol. 131, Oct. 2020, Art. no. 109238.

[41] H. Chen, L. Shi, K. Nguyen, A. Monjazeb, K. Matsukuma, T. Loehfelm,
H. Huang, J. Qiu, and Y. Rong, ‘‘MRI radiomics for prediction of tumor
response and downstaging in rectal cancer patients after preoperative
chemoradiation,’’ Adv. Radiat. Oncol., vol. 5, no. 6, pp. 1286–1295, 2020.

[42] N. Seo, H. Kim, M. S. Cho, and J. S. Lim, ‘‘Response assessment with
MRI after chemoradiotherapy in rectal cancer: Current evidences,’’Korean
J. Radiol., vol. 20, pp. 1003–1018, Jul. 2019.

[43] H. Öztürk, ‘‘PET/MRI: The future of cancer restaging,’’ Cancer Treatment
Res. Commun., vol. 25, Jan. 2020, Art. no. 100250.

VOLUME 10, 2022 87659



C.-J. Ho et al.: Unsupervised Learning Approach to 3D Rectal MRI Volume Registration

[44] J. S. Davids, K. Alavi, J. Andres Cervera-Servin, C. S. Choi, P. R. Sturrock,
W. B. Sweeney, and J. A. Maykel, ‘‘Routine preoperative restaging CTs
after neoadjuvant chemoradiation for locally advanced rectal cancer are
low yield: A retrospective case study,’’ Int. J. Surgery, vol. 12, no. 12,
pp. 1295–1299, Dec. 2014.

[45] W. Cai and G. Hong, ‘‘Quantitative image analysis for evaluation of tumor
response in clinical oncology,’’ Chronic Diseases Transl. Med., vol. 4,
no. 1, pp. 18–28, Mar. 2018.

[46] National Comprehensive Cancer Network. NCCN Guidelines for
Patients Rectal Cancer. Accessed: Sep. 22, 2021. [Online]. Available:
https://www.nccn.org/patients/guidelines/content/PDF/rectal-patient.pdf

[47] J. Ferlay, I. Soerjomataram, F. Lyon, and F. Lyon, ‘‘Global cancer statis-
tic 2020: GLOBOCAL estimates of incidence and mortality worldwide
for 36 cancers in 185 countries,’’ CA, A Cancer J. Clinicians. vol. 71,
pp. 209–249, Jun. 2021.

[48] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens,
‘‘Multimodality image registration by maximization of mutual informa-
tion,’’ IEEE Trans. Med. Imag., vol. 16, no. 2, pp. 187–198, Apr. 1997.

[49] E. Ardizzone, R. Gallea, O. Gambino, and R. Pirrone, ‘‘Multi-modal image
registration using fuzzy kernel regression,’’ in Proc. 16th IEEE Int. Conf.
Image Process. (ICIP), Nov. 2009, pp. 193–196.

CHI-JUI HO was born in Taipei, Taiwan, in 1996.
He received the bachelor’s degree in electrical
engineering from the National Taiwan University,
Taipei, in 2019. He is currently pursuing the Ph.D.
degree in electrical and computer engineering with
the University of California at San Diego, San
Diego, CA, USA. He was a Summer Intern with
MediaTek, Hsinchu, Taiwan, in 2018. His research
interests include computational imaging and med-
ical image registration.

SOAN T. M. DUONG received the B.Eng. degree
in information technology from Le Quy Don Tech-
nical University, Vietnam, in 2010, the M.Eng.
degree in computer science fromDongguk Univer-
sity, South Korea, in 2014, and the Ph.D. degree in
computer engineering from the University of Wol-
longong, Australia, in 2020. Her research interests
include image processing, medical image registra-
tion, medical image processing, machine learning,
and neural architecture search. She was awarded

the Examiners’ Commendation for Outstanding Thesis in 2020.

YIQIAN WANG received the B.S. degree in
electrical engineering from the Beijing Institute
of Technology, Beijing, China, in 2018. She is
currently pursuing the Ph.D. degree with the
Electrical and Computer Engineering Department,
University of California at San Diego, San Diego,
CA, USA. Her research interests include medi-
cal image processing, signal processing, and deep
learning.

CHANH D. TR. NGUYEN received the Ph.D.
degree in mechanical engineering from the Korea
Advanced Institute of Science and Technology
(KAIST), in 2018. He is currently the Head of
the Computer Vision Department, VinBrain JSC,
Vietnam. His current research interest includes
medical image analysis.

BIEU Q. BUI received the M.D. and Ph.D.
degrees. He is currently the Vice Director of the
Cancer Center and the Head of the Department of
Radiation Oncology and Radiosurgery, 108 Mili-
tary Central Hospital. He is an expert in radiation
oncology field. He is specialized in advanced gas-
trointestinal, liver and lung cancers, stereotactic
radiosurgery, stereotactic body radiation therapy,
and PET/CT-radiotherapy planning. He is a Viet-
nam NPC of RAS/6085 and RAS/6096 projects

involved radiation therapy with the International Atomic Energy Agency.
He has published several articles in Asia Oceania Journal of Nuclear
Medicine and Biology, European Journal of Nuclear Medicine and Molecu-
lar Imaging, Hepatoma Research, International Journal of Hepatology, and
Nuclear Medicine and Molecular Imaging.

STEVEN Q. H. TRUONG received the B.Sc.
degree in engineering science from the Univer-
sity of Toronto, Canada, in 1989, and the M.B.A.
degree in information technology from the Uni-
versity of Phoenix, USA, in 1997. He has been
with the AI and software industry for more than
26 years and has held senior leadership positions
in top technology companies in USA and Canada,
including Microsoft, Honeywell, and IntelliCom-
munities. He is currently the Founder and the CEO

of VinBrain JSC, which is an AI healthcare company and a subsidiary of
Vingroup, the largest conglomerate inVietnam.His research interests include
developing AI healthcare, smarthome, and smartcity systems.

TRUONG Q. NGUYEN (Fellow, IEEE) is cur-
rently a Distinguished Professor at the ECE
Department, UCSD. He is the coauthor (with Prof.
Gilbert Strang) of a popular textbook Wavelets
and Filter Banks (Wellesley-Cambridge Press,
1997). He has over 450 publications. His current
research interests include 3D video processing,
machine learning with applications in health mon-
itoring/analysis, and 3Dmodeling. He received the
IEEE TRANSACTIONS ON SIGNAL PROCESSING Paper

Award in 1992 and the NSF Career Award in 1995. He served as an
Associate Editor for the IEEE TRANSACTIONS ON SIGNAL PROCESSING, IEEE
SIGNAL PROCESSING LETTERS, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I:
REGULAR PAPERS, and IEEE TRANSACTIONS ON IMAGE PROCESSING.

CHEOLHONG AN received the B.S. and M.S.
degrees in electrical engineering from Pusan
National University, Busan, South Korea, in
1996 and 1998, respectively, and the Ph.D. degree
in electrical and computer engineering, in 2008.
He is currently an Assistant Adjunct Professor at
the Department of Electrical and Computer Engi-
neering, University of California at SanDiego, San
Diego, CA, USA. Earlier, he worked at Samsung
Electronics, South Korea; and Qualcomm, USA.

His current research is focused on the medical image processing and the
real-time bio image processing. His research interests include 2D and 3D
image processing with machine learning and sensor technology.

87660 VOLUME 10, 2022


